Moving-boundary problems for the time-fractional diffusion equation
- Autores
- Roscani, Sabrina Dina
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
Fractional diffusion equation
Asymptotic behaivor
Moving-boundary problem
Maximum principle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53329
Ver los metadatos del registro completo
id |
CONICETDig_eb9b352920bd5f70be240d84e46ef4ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53329 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Moving-boundary problems for the time-fractional diffusion equationRoscani, Sabrina DinaFractional diffusion equationAsymptotic behaivorMoving-boundary problemMaximum principlehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaTexas State University. Department of Mathematics2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53329Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-121072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/abstr.htmlinfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/roscani.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:23Zoai:ri.conicet.gov.ar:11336/53329instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:23.425CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Moving-boundary problems for the time-fractional diffusion equation |
title |
Moving-boundary problems for the time-fractional diffusion equation |
spellingShingle |
Moving-boundary problems for the time-fractional diffusion equation Roscani, Sabrina Dina Fractional diffusion equation Asymptotic behaivor Moving-boundary problem Maximum principle |
title_short |
Moving-boundary problems for the time-fractional diffusion equation |
title_full |
Moving-boundary problems for the time-fractional diffusion equation |
title_fullStr |
Moving-boundary problems for the time-fractional diffusion equation |
title_full_unstemmed |
Moving-boundary problems for the time-fractional diffusion equation |
title_sort |
Moving-boundary problems for the time-fractional diffusion equation |
dc.creator.none.fl_str_mv |
Roscani, Sabrina Dina |
author |
Roscani, Sabrina Dina |
author_facet |
Roscani, Sabrina Dina |
author_role |
author |
dc.subject.none.fl_str_mv |
Fractional diffusion equation Asymptotic behaivor Moving-boundary problem Maximum principle |
topic |
Fractional diffusion equation Asymptotic behaivor Moving-boundary problem Maximum principle |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions. Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
description |
We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53329 Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-12 1072-6691 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53329 |
identifier_str_mv |
Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-12 1072-6691 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/abstr.html info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/roscani.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083342842200064 |
score |
13.22299 |