Moving-boundary problems for the time-fractional diffusion equation
- Autores
- Roscani, Sabrina Dina
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
Fractional diffusion equation
Asymptotic behaivor
Moving-boundary problem
Maximum principle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53329
Ver los metadatos del registro completo
| id |
CONICETDig_eb9b352920bd5f70be240d84e46ef4ee |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53329 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Moving-boundary problems for the time-fractional diffusion equationRoscani, Sabrina DinaFractional diffusion equationAsymptotic behaivorMoving-boundary problemMaximum principlehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaTexas State University. Department of Mathematics2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53329Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-121072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/abstr.htmlinfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/roscani.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:26:43Zoai:ri.conicet.gov.ar:11336/53329instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:26:43.481CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Moving-boundary problems for the time-fractional diffusion equation |
| title |
Moving-boundary problems for the time-fractional diffusion equation |
| spellingShingle |
Moving-boundary problems for the time-fractional diffusion equation Roscani, Sabrina Dina Fractional diffusion equation Asymptotic behaivor Moving-boundary problem Maximum principle |
| title_short |
Moving-boundary problems for the time-fractional diffusion equation |
| title_full |
Moving-boundary problems for the time-fractional diffusion equation |
| title_fullStr |
Moving-boundary problems for the time-fractional diffusion equation |
| title_full_unstemmed |
Moving-boundary problems for the time-fractional diffusion equation |
| title_sort |
Moving-boundary problems for the time-fractional diffusion equation |
| dc.creator.none.fl_str_mv |
Roscani, Sabrina Dina |
| author |
Roscani, Sabrina Dina |
| author_facet |
Roscani, Sabrina Dina |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Fractional diffusion equation Asymptotic behaivor Moving-boundary problem Maximum principle |
| topic |
Fractional diffusion equation Asymptotic behaivor Moving-boundary problem Maximum principle |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions. Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
| description |
We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53329 Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-12 1072-6691 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/53329 |
| identifier_str_mv |
Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-12 1072-6691 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/abstr.html info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/roscani.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
| publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977915585658880 |
| score |
13.084122 |