Moving-boundary problems for the time-fractional diffusion equation

Autores
Roscani, Sabrina Dina
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
Fractional diffusion equation
Asymptotic behaivor
Moving-boundary problem
Maximum principle
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53329

id CONICETDig_eb9b352920bd5f70be240d84e46ef4ee
oai_identifier_str oai:ri.conicet.gov.ar:11336/53329
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Moving-boundary problems for the time-fractional diffusion equationRoscani, Sabrina DinaFractional diffusion equationAsymptotic behaivorMoving-boundary problemMaximum principlehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaTexas State University. Department of Mathematics2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53329Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-121072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/abstr.htmlinfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/roscani.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:23Zoai:ri.conicet.gov.ar:11336/53329instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:23.425CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Moving-boundary problems for the time-fractional diffusion equation
title Moving-boundary problems for the time-fractional diffusion equation
spellingShingle Moving-boundary problems for the time-fractional diffusion equation
Roscani, Sabrina Dina
Fractional diffusion equation
Asymptotic behaivor
Moving-boundary problem
Maximum principle
title_short Moving-boundary problems for the time-fractional diffusion equation
title_full Moving-boundary problems for the time-fractional diffusion equation
title_fullStr Moving-boundary problems for the time-fractional diffusion equation
title_full_unstemmed Moving-boundary problems for the time-fractional diffusion equation
title_sort Moving-boundary problems for the time-fractional diffusion equation
dc.creator.none.fl_str_mv Roscani, Sabrina Dina
author Roscani, Sabrina Dina
author_facet Roscani, Sabrina Dina
author_role author
dc.subject.none.fl_str_mv Fractional diffusion equation
Asymptotic behaivor
Moving-boundary problem
Maximum principle
topic Fractional diffusion equation
Asymptotic behaivor
Moving-boundary problem
Maximum principle
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description We consider a one-dimensional moving-boundary problem for thetime-fractional diffusion equation. The time-fractional derivative of order α ∈(0, 1) is taken in the sense of Caputo. We study the asymptotic behaivor, ast tends to infinity, of a general solution by using a fractional weak maximumprinciple. Also, we give some particular exact solutions in terms of Wright functions.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53329
Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-12
1072-6691
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53329
identifier_str_mv Roscani, Sabrina Dina; Moving-boundary problems for the time-fractional diffusion equation; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2017; 44; 2-2017; 1-12
1072-6691
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/abstr.html
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2017/44/roscani.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Texas State University. Department of Mathematics
publisher.none.fl_str_mv Texas State University. Department of Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083342842200064
score 13.22299