A free boundary problem for a diffusion–convection equation
- Autores
- Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One-dimensional free boundary problem for a nonlinear diffusion - convection equation with a Dirichlet condition at fixed face x=0, variable in time, is considered. Throught several transformations the problem is reduced to a free boundary problem for a diffusion equation and the integral formulation is obtained. By using fixed point theorems, the existence and uniqueness of solution, for small time, to a system of coupled nonlinear integral equations is obtained.
Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
DIFFUSION CONVECTION EQUATION
FREE BOUNDARY PROBLEM
NONLINEAR INTEGRAL EQUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109386
Ver los metadatos del registro completo
id |
CONICETDig_9ce8539eea1f9b44ea3560b7d3dea33f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109386 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A free boundary problem for a diffusion–convection equationBriozzo, Adriana ClotildeTarzia, Domingo AlbertoDIFFUSION CONVECTION EQUATIONFREE BOUNDARY PROBLEMNONLINEAR INTEGRAL EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1One-dimensional free boundary problem for a nonlinear diffusion - convection equation with a Dirichlet condition at fixed face x=0, variable in time, is considered. Throught several transformations the problem is reduced to a free boundary problem for a diffusion equation and the integral formulation is obtained. By using fixed point theorems, the existence and uniqueness of solution, for small time, to a system of coupled nonlinear integral equations is obtained.Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaPergamon-Elsevier Science Ltd2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109386Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A free boundary problem for a diffusion–convection equation; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 120; 4-2020; 1-300020-7462CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0020746219307152info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2019.103394info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:19Zoai:ri.conicet.gov.ar:11336/109386instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:19.954CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A free boundary problem for a diffusion–convection equation |
title |
A free boundary problem for a diffusion–convection equation |
spellingShingle |
A free boundary problem for a diffusion–convection equation Briozzo, Adriana Clotilde DIFFUSION CONVECTION EQUATION FREE BOUNDARY PROBLEM NONLINEAR INTEGRAL EQUATION |
title_short |
A free boundary problem for a diffusion–convection equation |
title_full |
A free boundary problem for a diffusion–convection equation |
title_fullStr |
A free boundary problem for a diffusion–convection equation |
title_full_unstemmed |
A free boundary problem for a diffusion–convection equation |
title_sort |
A free boundary problem for a diffusion–convection equation |
dc.creator.none.fl_str_mv |
Briozzo, Adriana Clotilde Tarzia, Domingo Alberto |
author |
Briozzo, Adriana Clotilde |
author_facet |
Briozzo, Adriana Clotilde Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
DIFFUSION CONVECTION EQUATION FREE BOUNDARY PROBLEM NONLINEAR INTEGRAL EQUATION |
topic |
DIFFUSION CONVECTION EQUATION FREE BOUNDARY PROBLEM NONLINEAR INTEGRAL EQUATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
One-dimensional free boundary problem for a nonlinear diffusion - convection equation with a Dirichlet condition at fixed face x=0, variable in time, is considered. Throught several transformations the problem is reduced to a free boundary problem for a diffusion equation and the integral formulation is obtained. By using fixed point theorems, the existence and uniqueness of solution, for small time, to a system of coupled nonlinear integral equations is obtained. Fil: Briozzo, Adriana Clotilde. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
One-dimensional free boundary problem for a nonlinear diffusion - convection equation with a Dirichlet condition at fixed face x=0, variable in time, is considered. Throught several transformations the problem is reduced to a free boundary problem for a diffusion equation and the integral formulation is obtained. By using fixed point theorems, the existence and uniqueness of solution, for small time, to a system of coupled nonlinear integral equations is obtained. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109386 Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A free boundary problem for a diffusion–convection equation; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 120; 4-2020; 1-30 0020-7462 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/109386 |
identifier_str_mv |
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; A free boundary problem for a diffusion–convection equation; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 120; 4-2020; 1-30 0020-7462 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0020746219307152 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2019.103394 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980579220389888 |
score |
12.993085 |