On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis

Autores
Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.
Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; Argentina
Materia
CAPUTO DERIVATIVE
INITIAL BAUNDARY VALUE PROBLEM
FRACTIONAL DIFFUSION EQUATION
EXPLICIT SOLUTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52779

id CONICETDig_7112c4fb24f2315b3272a8e84ad8a6b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/52779
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive SemiaxisGoos, Demian NahuelReyero, Gabriela FernandaRoscani, Sabrina DinaSantillan Marcus, Eduardo AdrianCAPUTO DERIVATIVEINITIAL BAUNDARY VALUE PROBLEMFRACTIONAL DIFFUSION EQUATIONEXPLICIT SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; ArgentinaHindawi Publishing Corporation2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52779Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-151687-9651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2015/439419info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/439419/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:55Zoai:ri.conicet.gov.ar:11336/52779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:55.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
title On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
spellingShingle On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
Goos, Demian Nahuel
CAPUTO DERIVATIVE
INITIAL BAUNDARY VALUE PROBLEM
FRACTIONAL DIFFUSION EQUATION
EXPLICIT SOLUTIONS
title_short On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
title_full On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
title_fullStr On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
title_full_unstemmed On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
title_sort On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
dc.creator.none.fl_str_mv Goos, Demian Nahuel
Reyero, Gabriela Fernanda
Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author Goos, Demian Nahuel
author_facet Goos, Demian Nahuel
Reyero, Gabriela Fernanda
Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author_role author
author2 Reyero, Gabriela Fernanda
Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author2_role author
author
author
dc.subject.none.fl_str_mv CAPUTO DERIVATIVE
INITIAL BAUNDARY VALUE PROBLEM
FRACTIONAL DIFFUSION EQUATION
EXPLICIT SOLUTIONS
topic CAPUTO DERIVATIVE
INITIAL BAUNDARY VALUE PROBLEM
FRACTIONAL DIFFUSION EQUATION
EXPLICIT SOLUTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.
Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; Argentina
description We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52779
Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-15
1687-9651
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52779
identifier_str_mv Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-15
1687-9651
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1155/2015/439419
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/439419/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082720280608768
score 13.22299