On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis
- Autores
- Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.
Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; Argentina - Materia
-
CAPUTO DERIVATIVE
INITIAL BAUNDARY VALUE PROBLEM
FRACTIONAL DIFFUSION EQUATION
EXPLICIT SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52779
Ver los metadatos del registro completo
id |
CONICETDig_7112c4fb24f2315b3272a8e84ad8a6b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52779 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive SemiaxisGoos, Demian NahuelReyero, Gabriela FernandaRoscani, Sabrina DinaSantillan Marcus, Eduardo AdrianCAPUTO DERIVATIVEINITIAL BAUNDARY VALUE PROBLEMFRACTIONAL DIFFUSION EQUATIONEXPLICIT SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation.Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; ArgentinaHindawi Publishing Corporation2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52779Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-151687-9651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2015/439419info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/439419/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:55Zoai:ri.conicet.gov.ar:11336/52779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:55.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
title |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
spellingShingle |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis Goos, Demian Nahuel CAPUTO DERIVATIVE INITIAL BAUNDARY VALUE PROBLEM FRACTIONAL DIFFUSION EQUATION EXPLICIT SOLUTIONS |
title_short |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
title_full |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
title_fullStr |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
title_full_unstemmed |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
title_sort |
On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis |
dc.creator.none.fl_str_mv |
Goos, Demian Nahuel Reyero, Gabriela Fernanda Roscani, Sabrina Dina Santillan Marcus, Eduardo Adrian |
author |
Goos, Demian Nahuel |
author_facet |
Goos, Demian Nahuel Reyero, Gabriela Fernanda Roscani, Sabrina Dina Santillan Marcus, Eduardo Adrian |
author_role |
author |
author2 |
Reyero, Gabriela Fernanda Roscani, Sabrina Dina Santillan Marcus, Eduardo Adrian |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CAPUTO DERIVATIVE INITIAL BAUNDARY VALUE PROBLEM FRACTIONAL DIFFUSION EQUATION EXPLICIT SOLUTIONS |
topic |
CAPUTO DERIVATIVE INITIAL BAUNDARY VALUE PROBLEM FRACTIONAL DIFFUSION EQUATION EXPLICIT SOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation. Fil: Goos, Demian Nahuel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Roscani, Sabrina Dina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Universidad Austral; Argentina |
description |
We consider the time-fractional derivative in the Caputo sense of order α ∈ (0, 1). Taking into account the asymptotic behavior and the existence of bounds for the Mainardi and the Wright function in R+, two different initial-boundary-value problems for the time-fractional diffusion equation on the real positive semiaxis are solved. Moreover, the limit when α 1 of the respective solutions is analyzed, recovering the solutions of the classical boundary-value problems when α = 1, and the fractional diffusion equation becomes the heat equation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52779 Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-15 1687-9651 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52779 |
identifier_str_mv |
Goos, Demian Nahuel; Reyero, Gabriela Fernanda; Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; On the Initial-Boundary-Value Problem for the Time-Fractional Diffusion Equation on the Real Positive Semiaxis; Hindawi Publishing Corporation; International Journal of Differential Equations; 2015; 9-2015; 1-15 1687-9651 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2015/439419 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/ijde/2015/439419/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082720280608768 |
score |
13.22299 |