Two equivalent Stefan’s problems for the time fractional diffusion equation

Autores
Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; Argentina
Materia
FRACTIONARY STEFAN'S PROBLEMS
FRACTIONAL DIFFUSION EQUATION
CAPUTO'S DERIVATIVE
WRIGHT FUNCTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21870

id CONICETDig_2a51705640cb740a5478631973d0aff3
oai_identifier_str oai:ri.conicet.gov.ar:11336/21870
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two equivalent Stefan’s problems for the time fractional diffusion equationRoscani, Sabrina DinaSantillan Marcus, Eduardo AdrianFRACTIONARY STEFAN'S PROBLEMSFRACTIONAL DIFFUSION EQUATIONCAPUTO'S DERIVATIVEWRIGHT FUNCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; ArgentinaDe Gruyter2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21870Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-8151311-04541314-2224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s13540-013-0050-7info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0050-7/s13540-013-0050-7.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:05Zoai:ri.conicet.gov.ar:11336/21870instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:05.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two equivalent Stefan’s problems for the time fractional diffusion equation
title Two equivalent Stefan’s problems for the time fractional diffusion equation
spellingShingle Two equivalent Stefan’s problems for the time fractional diffusion equation
Roscani, Sabrina Dina
FRACTIONARY STEFAN'S PROBLEMS
FRACTIONAL DIFFUSION EQUATION
CAPUTO'S DERIVATIVE
WRIGHT FUNCTION
title_short Two equivalent Stefan’s problems for the time fractional diffusion equation
title_full Two equivalent Stefan’s problems for the time fractional diffusion equation
title_fullStr Two equivalent Stefan’s problems for the time fractional diffusion equation
title_full_unstemmed Two equivalent Stefan’s problems for the time fractional diffusion equation
title_sort Two equivalent Stefan’s problems for the time fractional diffusion equation
dc.creator.none.fl_str_mv Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author Roscani, Sabrina Dina
author_facet Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author_role author
author2 Santillan Marcus, Eduardo Adrian
author2_role author
dc.subject.none.fl_str_mv FRACTIONARY STEFAN'S PROBLEMS
FRACTIONAL DIFFUSION EQUATION
CAPUTO'S DERIVATIVE
WRIGHT FUNCTION
topic FRACTIONARY STEFAN'S PROBLEMS
FRACTIONAL DIFFUSION EQUATION
CAPUTO'S DERIVATIVE
WRIGHT FUNCTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; Argentina
description Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21870
Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-815
1311-0454
1314-2224
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21870
identifier_str_mv Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-815
1311-0454
1314-2224
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2478/s13540-013-0050-7
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0050-7/s13540-013-0050-7.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614159511060480
score 13.070432