Two equivalent Stefan’s problems for the time fractional diffusion equation
- Autores
- Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; Argentina - Materia
-
FRACTIONARY STEFAN'S PROBLEMS
FRACTIONAL DIFFUSION EQUATION
CAPUTO'S DERIVATIVE
WRIGHT FUNCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21870
Ver los metadatos del registro completo
id |
CONICETDig_2a51705640cb740a5478631973d0aff3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21870 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two equivalent Stefan’s problems for the time fractional diffusion equationRoscani, Sabrina DinaSantillan Marcus, Eduardo AdrianFRACTIONARY STEFAN'S PROBLEMSFRACTIONAL DIFFUSION EQUATIONCAPUTO'S DERIVATIVEWRIGHT FUNCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition.Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; ArgentinaDe Gruyter2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21870Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-8151311-04541314-2224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s13540-013-0050-7info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0050-7/s13540-013-0050-7.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:05Zoai:ri.conicet.gov.ar:11336/21870instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:05.295CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
title |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
spellingShingle |
Two equivalent Stefan’s problems for the time fractional diffusion equation Roscani, Sabrina Dina FRACTIONARY STEFAN'S PROBLEMS FRACTIONAL DIFFUSION EQUATION CAPUTO'S DERIVATIVE WRIGHT FUNCTION |
title_short |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
title_full |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
title_fullStr |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
title_full_unstemmed |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
title_sort |
Two equivalent Stefan’s problems for the time fractional diffusion equation |
dc.creator.none.fl_str_mv |
Roscani, Sabrina Dina Santillan Marcus, Eduardo Adrian |
author |
Roscani, Sabrina Dina |
author_facet |
Roscani, Sabrina Dina Santillan Marcus, Eduardo Adrian |
author_role |
author |
author2 |
Santillan Marcus, Eduardo Adrian |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRACTIONARY STEFAN'S PROBLEMS FRACTIONAL DIFFUSION EQUATION CAPUTO'S DERIVATIVE WRIGHT FUNCTION |
topic |
FRACTIONARY STEFAN'S PROBLEMS FRACTIONAL DIFFUSION EQUATION CAPUTO'S DERIVATIVE WRIGHT FUNCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition. Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral. Facultad de Ciencias Empresariales; Argentina |
description |
Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition Tx(0, t) = q t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21870 Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-815 1311-0454 1314-2224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21870 |
identifier_str_mv |
Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; Two equivalent Stefan’s problems for the time fractional diffusion equation; De Gruyter; Fractional Calculus and Applied Analysis; 16; 4; 9-2013; 802-815 1311-0454 1314-2224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2478/s13540-013-0050-7 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2013.16.issue-4/s13540-013-0050-7/s13540-013-0050-7.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614159511060480 |
score |
13.070432 |