Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications
- Autores
- Rogers, Colin; Briozzo, Adriana Clotilde
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Moving boundary problems of Stefan-type for a novel third order nonlinear evolution equation with temporal modulation are here shown to be amenable to exact Airy-type solution via a classical Ermakov equation with its admitted nonlinear superposition principle. Application of the latter together with a class of involutory transformations sets the original moving boundary problem in a wide class with temporal modulation. As an appendix, reciprocally associated exactly solvable moving boundary problems are derived.
Fil: Rogers, Colin. University of New South Wales; Australia
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
Moving boundary problems
Ermakov symmetry reduction
Nonlinear superposition principle
Reciprocal transformation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/280149
Ver los metadatos del registro completo
| id |
CONICETDig_75cf8b2762ced5c80adf59d1c2551816 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/280149 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applicationsRogers, ColinBriozzo, Adriana ClotildeMoving boundary problemsErmakov symmetry reductionNonlinear superposition principleReciprocal transformationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Moving boundary problems of Stefan-type for a novel third order nonlinear evolution equation with temporal modulation are here shown to be amenable to exact Airy-type solution via a classical Ermakov equation with its admitted nonlinear superposition principle. Application of the latter together with a class of involutory transformations sets the original moving boundary problem in a wide class with temporal modulation. As an appendix, reciprocally associated exactly solvable moving boundary problems are derived.Fil: Rogers, Colin. University of New South Wales; AustraliaFil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaEPI Sciences2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280149Rogers, Colin; Briozzo, Adriana Clotilde; Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications; EPI Sciences; Open Communications in Nonlinear Mathematical Physics; Volume 5; 10-2025; 1-112802-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ocnmp.episciences.org/16483info:eu-repo/semantics/altIdentifier/doi/10.46298/ocnmp.16483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:20:26Zoai:ri.conicet.gov.ar:11336/280149instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:20:27.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| title |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| spellingShingle |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications Rogers, Colin Moving boundary problems Ermakov symmetry reduction Nonlinear superposition principle Reciprocal transformation |
| title_short |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| title_full |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| title_fullStr |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| title_full_unstemmed |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| title_sort |
Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications |
| dc.creator.none.fl_str_mv |
Rogers, Colin Briozzo, Adriana Clotilde |
| author |
Rogers, Colin |
| author_facet |
Rogers, Colin Briozzo, Adriana Clotilde |
| author_role |
author |
| author2 |
Briozzo, Adriana Clotilde |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Moving boundary problems Ermakov symmetry reduction Nonlinear superposition principle Reciprocal transformation |
| topic |
Moving boundary problems Ermakov symmetry reduction Nonlinear superposition principle Reciprocal transformation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Moving boundary problems of Stefan-type for a novel third order nonlinear evolution equation with temporal modulation are here shown to be amenable to exact Airy-type solution via a classical Ermakov equation with its admitted nonlinear superposition principle. Application of the latter together with a class of involutory transformations sets the original moving boundary problem in a wide class with temporal modulation. As an appendix, reciprocally associated exactly solvable moving boundary problems are derived. Fil: Rogers, Colin. University of New South Wales; Australia Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
| description |
Moving boundary problems of Stefan-type for a novel third order nonlinear evolution equation with temporal modulation are here shown to be amenable to exact Airy-type solution via a classical Ermakov equation with its admitted nonlinear superposition principle. Application of the latter together with a class of involutory transformations sets the original moving boundary problem in a wide class with temporal modulation. As an appendix, reciprocally associated exactly solvable moving boundary problems are derived. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/280149 Rogers, Colin; Briozzo, Adriana Clotilde; Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications; EPI Sciences; Open Communications in Nonlinear Mathematical Physics; Volume 5; 10-2025; 1-11 2802-9356 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/280149 |
| identifier_str_mv |
Rogers, Colin; Briozzo, Adriana Clotilde; Moving boundary problems with Ermakov symmetry reduction: nonlinear superposition principle and reciprocal transformation applications; EPI Sciences; Open Communications in Nonlinear Mathematical Physics; Volume 5; 10-2025; 1-11 2802-9356 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ocnmp.episciences.org/16483 info:eu-repo/semantics/altIdentifier/doi/10.46298/ocnmp.16483 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
EPI Sciences |
| publisher.none.fl_str_mv |
EPI Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856402980327129088 |
| score |
13.106097 |