A new equivalence of Stefan’s problems for the time fractional diffusion equation

Autores
Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A fractional Stefan’s problem with a boundary convective condition is solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. Then an equivalence with other two fractional Stefan’s problems (the first one with a constant condition on x = 0 and the second with a flux condition) is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral Rosario. Facultad de Ciencias Empresariales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Caputo's fractional derivative
Fractional diffusion equation
Stefan's problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30098

id CONICETDig_6c9fb1cfa4f27b40f51dc7e939a355d6
oai_identifier_str oai:ri.conicet.gov.ar:11336/30098
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A new equivalence of Stefan’s problems for the time fractional diffusion equationRoscani, Sabrina DinaSantillan Marcus, Eduardo AdrianCaputo's fractional derivativeFractional diffusion equationStefan's problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A fractional Stefan’s problem with a boundary convective condition is solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. Then an equivalence with other two fractional Stefan’s problems (the first one with a constant condition on x = 0 and the second with a flux condition) is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s conditionFil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Austral Rosario. Facultad de Ciencias Empresariales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30098Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; A new equivalence of Stefan’s problems for the time fractional diffusion equation; Springer; Fractional Calculus and Applied Analysis; 17; 2; 6-2014; 371-3811311-04541314-2224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s13540-014-0175-3info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2014.17.issue-2/s13540-014-0175-3/s13540-014-0175-3.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:04Zoai:ri.conicet.gov.ar:11336/30098instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:04.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A new equivalence of Stefan’s problems for the time fractional diffusion equation
title A new equivalence of Stefan’s problems for the time fractional diffusion equation
spellingShingle A new equivalence of Stefan’s problems for the time fractional diffusion equation
Roscani, Sabrina Dina
Caputo's fractional derivative
Fractional diffusion equation
Stefan's problem
title_short A new equivalence of Stefan’s problems for the time fractional diffusion equation
title_full A new equivalence of Stefan’s problems for the time fractional diffusion equation
title_fullStr A new equivalence of Stefan’s problems for the time fractional diffusion equation
title_full_unstemmed A new equivalence of Stefan’s problems for the time fractional diffusion equation
title_sort A new equivalence of Stefan’s problems for the time fractional diffusion equation
dc.creator.none.fl_str_mv Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author Roscani, Sabrina Dina
author_facet Roscani, Sabrina Dina
Santillan Marcus, Eduardo Adrian
author_role author
author2 Santillan Marcus, Eduardo Adrian
author2_role author
dc.subject.none.fl_str_mv Caputo's fractional derivative
Fractional diffusion equation
Stefan's problem
topic Caputo's fractional derivative
Fractional diffusion equation
Stefan's problem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A fractional Stefan’s problem with a boundary convective condition is solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. Then an equivalence with other two fractional Stefan’s problems (the first one with a constant condition on x = 0 and the second with a flux condition) is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition
Fil: Roscani, Sabrina Dina. Universidad Nacional de Rosario. Facultad de Cs.exactas Ingeniería y Agrimensura. Escuela de Cs.exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Austral Rosario. Facultad de Ciencias Empresariales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A fractional Stefan’s problem with a boundary convective condition is solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. Then an equivalence with other two fractional Stefan’s problems (the first one with a constant condition on x = 0 and the second with a flux condition) is proved and the convergence to the classical solutions is analyzed when α 1 recovering the heat equation with its respective Stefan’s condition
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30098
Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; A new equivalence of Stefan’s problems for the time fractional diffusion equation; Springer; Fractional Calculus and Applied Analysis; 17; 2; 6-2014; 371-381
1311-0454
1314-2224
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30098
identifier_str_mv Roscani, Sabrina Dina; Santillan Marcus, Eduardo Adrian; A new equivalence of Stefan’s problems for the time fractional diffusion equation; Springer; Fractional Calculus and Applied Analysis; 17; 2; 6-2014; 371-381
1311-0454
1314-2224
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2478/s13540-014-0175-3
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/fca.2014.17.issue-2/s13540-014-0175-3/s13540-014-0175-3.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269735317667840
score 13.13397