The Ricci flow in a class of solvmanifolds

Autores
Arroyo, Romina Melisa
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.
Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Ricci Flow
Solvmanifolds
Bracket Flow
Negative Curvature
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2271

id CONICETDig_e7f2b6564a21a61b8a744a4eae265a75
oai_identifier_str oai:ri.conicet.gov.ar:11336/2271
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Ricci flow in a class of solvmanifoldsArroyo, Romina MelisaRicci FlowSolvmanifoldsBracket FlowNegative Curvaturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2271Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-4850926-2245enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513000296info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2013.04.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:30Zoai:ri.conicet.gov.ar:11336/2271instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:31.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Ricci flow in a class of solvmanifolds
title The Ricci flow in a class of solvmanifolds
spellingShingle The Ricci flow in a class of solvmanifolds
Arroyo, Romina Melisa
Ricci Flow
Solvmanifolds
Bracket Flow
Negative Curvature
title_short The Ricci flow in a class of solvmanifolds
title_full The Ricci flow in a class of solvmanifolds
title_fullStr The Ricci flow in a class of solvmanifolds
title_full_unstemmed The Ricci flow in a class of solvmanifolds
title_sort The Ricci flow in a class of solvmanifolds
dc.creator.none.fl_str_mv Arroyo, Romina Melisa
author Arroyo, Romina Melisa
author_facet Arroyo, Romina Melisa
author_role author
dc.subject.none.fl_str_mv Ricci Flow
Solvmanifolds
Bracket Flow
Negative Curvature
topic Ricci Flow
Solvmanifolds
Bracket Flow
Negative Curvature
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.
Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2271
Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-485
0926-2245
url http://hdl.handle.net/11336/2271
identifier_str_mv Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-485
0926-2245
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513000296
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2013.04.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613765549522944
score 13.070432