The Ricci flow in a class of solvmanifolds
- Autores
- Arroyo, Romina Melisa
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.
Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Ricci Flow
Solvmanifolds
Bracket Flow
Negative Curvature - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2271
Ver los metadatos del registro completo
id |
CONICETDig_e7f2b6564a21a61b8a744a4eae265a75 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2271 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Ricci flow in a class of solvmanifoldsArroyo, Romina MelisaRicci FlowSolvmanifoldsBracket FlowNegative Curvaturehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time.Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElsevier2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2271Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-4850926-2245enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513000296info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2013.04.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:30Zoai:ri.conicet.gov.ar:11336/2271instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:31.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Ricci flow in a class of solvmanifolds |
title |
The Ricci flow in a class of solvmanifolds |
spellingShingle |
The Ricci flow in a class of solvmanifolds Arroyo, Romina Melisa Ricci Flow Solvmanifolds Bracket Flow Negative Curvature |
title_short |
The Ricci flow in a class of solvmanifolds |
title_full |
The Ricci flow in a class of solvmanifolds |
title_fullStr |
The Ricci flow in a class of solvmanifolds |
title_full_unstemmed |
The Ricci flow in a class of solvmanifolds |
title_sort |
The Ricci flow in a class of solvmanifolds |
dc.creator.none.fl_str_mv |
Arroyo, Romina Melisa |
author |
Arroyo, Romina Melisa |
author_facet |
Arroyo, Romina Melisa |
author_role |
author |
dc.subject.none.fl_str_mv |
Ricci Flow Solvmanifolds Bracket Flow Negative Curvature |
topic |
Ricci Flow Solvmanifolds Bracket Flow Negative Curvature |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time. Fil: Arroyo, Romina Melisa. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In this paper, we study the Ricci flow of solvmanifolds whose Lie algebra has an abelian ideal of codimension one, by using the bracket flow. We prove that solutions to the Ricci flow are immortal, the omega-limit of bracket flow solutions is a single point, and that for any sequence of times there exists a subsequence in which the Ricci flow converges, in the pointed topology, to a manifold which is locally isometric to a flat manifold. We give a functional which is non-increasing along a normalized bracket flow that will allow us to prove that given a sequence of times, one can extract a subsequence converging to an algebraic soliton, and to determine which of these limits are flat. Finally, we use these results to prove that if a Lie group in this class admits a Riemannian metric of negative sectional curvature, then the curvature of any Ricci flow solution will become negative in finite time. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2271 Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-485 0926-2245 |
url |
http://hdl.handle.net/11336/2271 |
identifier_str_mv |
Arroyo, Romina Melisa; The Ricci flow in a class of solvmanifolds; Elsevier; Differential Geometry and its Applications; 31; 4; 8-2013; 472-485 0926-2245 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224513000296 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2013.04.002 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613765549522944 |
score |
13.070432 |