On the diagonalization of the Ricci flow on Lie groups
- Autores
- Lauret, Jorge Ruben; Will, Cynthia Eugenia
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Ricci Flow
Lie group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/200759
Ver los metadatos del registro completo
| id |
CONICETDig_6c8060b0b980adb470526c08518fa8d7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/200759 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the diagonalization of the Ricci flow on Lie groupsLauret, Jorge RubenWill, Cynthia EugeniaRicci FlowLie grouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200759Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the diagonalization of the Ricci flow on Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 10; 6-2012; 3651-36630002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/23562388info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1110.4003info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1110.4003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:05:39Zoai:ri.conicet.gov.ar:11336/200759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:05:40.021CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the diagonalization of the Ricci flow on Lie groups |
| title |
On the diagonalization of the Ricci flow on Lie groups |
| spellingShingle |
On the diagonalization of the Ricci flow on Lie groups Lauret, Jorge Ruben Ricci Flow Lie group |
| title_short |
On the diagonalization of the Ricci flow on Lie groups |
| title_full |
On the diagonalization of the Ricci flow on Lie groups |
| title_fullStr |
On the diagonalization of the Ricci flow on Lie groups |
| title_full_unstemmed |
On the diagonalization of the Ricci flow on Lie groups |
| title_sort |
On the diagonalization of the Ricci flow on Lie groups |
| dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben Will, Cynthia Eugenia |
| author |
Lauret, Jorge Ruben |
| author_facet |
Lauret, Jorge Ruben Will, Cynthia Eugenia |
| author_role |
author |
| author2 |
Will, Cynthia Eugenia |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ricci Flow Lie group |
| topic |
Ricci Flow Lie group |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
| description |
The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/200759 Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the diagonalization of the Ricci flow on Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 10; 6-2012; 3651-3663 0002-9939 1088-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/200759 |
| identifier_str_mv |
Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the diagonalization of the Ricci flow on Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 10; 6-2012; 3651-3663 0002-9939 1088-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/23562388 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1110.4003 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1110.4003 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426845715202048 |
| score |
13.10058 |