On the diagonalization of the Ricci flow on Lie groups
- Autores
- Lauret, Jorge Ruben; Will, Cynthia Eugenia
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Ricci Flow
Lie group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/200759
Ver los metadatos del registro completo
id |
CONICETDig_6c8060b0b980adb470526c08518fa8d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/200759 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the diagonalization of the Ricci flow on Lie groupsLauret, Jorge RubenWill, Cynthia EugeniaRicci FlowLie grouphttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/200759Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the diagonalization of the Ricci flow on Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 10; 6-2012; 3651-36630002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/23562388info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1110.4003info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1110.4003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:18Zoai:ri.conicet.gov.ar:11336/200759instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:18.373CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the diagonalization of the Ricci flow on Lie groups |
title |
On the diagonalization of the Ricci flow on Lie groups |
spellingShingle |
On the diagonalization of the Ricci flow on Lie groups Lauret, Jorge Ruben Ricci Flow Lie group |
title_short |
On the diagonalization of the Ricci flow on Lie groups |
title_full |
On the diagonalization of the Ricci flow on Lie groups |
title_fullStr |
On the diagonalization of the Ricci flow on Lie groups |
title_full_unstemmed |
On the diagonalization of the Ricci flow on Lie groups |
title_sort |
On the diagonalization of the Ricci flow on Lie groups |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben Will, Cynthia Eugenia |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben Will, Cynthia Eugenia |
author_role |
author |
author2 |
Will, Cynthia Eugenia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ricci Flow Lie group |
topic |
Ricci Flow Lie group |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The main purpose of this note is to prove that any basis of a nilpotent Lie algebra for which all diagonal left-invariant metrics have diagonal Ricci tensor necessarily produce quite a simple set of structural constants; namely, the bracket of any pair of elements of the basis must be a multiple of one of them and only the bracket of disjoint pairs can be nonzero multiples of the same element. Some applications to the Ricci flow of left-invariant metrics on Lie groups concerning diagonalization are also given. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/200759 Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the diagonalization of the Ricci flow on Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 10; 6-2012; 3651-3663 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/200759 |
identifier_str_mv |
Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the diagonalization of the Ricci flow on Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 10; 6-2012; 3651-3663 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/23562388 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1110.4003 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1110.4003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613867496275968 |
score |
13.070432 |