Ricci flow of homogeneous manifolds
- Autores
- Lauret, Jorge Ruben
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present in this paper a general approach to study the Ricci flow on homogeneous manifolds. Our main tool is a dynamical system defined on a subset Hq,n of the variety of (q+n)-dimensional Lie algebras, parameterizing the space of all simply connected homogeneous spaces of dimension n with a q-dimensional isotropy, which is proved to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visualize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as well as to determine the type of the possible singularities. Ancient solutions arise naturally from the qualitative analysis of the evolution equation. We develop two examples in detail: a 2-parameter subspace of H1,3 reaching most of 3-dimensional geometries, and a 2-parameter family in H0,n of left-invariant metrics on n-dimensional compact and non-compact semisimple Lie groups.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
- Ricci Flow
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8988
Ver los metadatos del registro completo
id |
CONICETDig_5da36abb1fc60b259c62e85a9e636bee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8988 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ricci flow of homogeneous manifoldsLauret, Jorge RubenRicci Flowhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present in this paper a general approach to study the Ricci flow on homogeneous manifolds. Our main tool is a dynamical system defined on a subset Hq,n of the variety of (q+n)-dimensional Lie algebras, parameterizing the space of all simply connected homogeneous spaces of dimension n with a q-dimensional isotropy, which is proved to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visualize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as well as to determine the type of the possible singularities. Ancient solutions arise naturally from the qualitative analysis of the evolution equation. We develop two examples in detail: a 2-parameter subspace of H1,3 reaching most of 3-dimensional geometries, and a 2-parameter family in H0,n of left-invariant metrics on n-dimensional compact and non-compact semisimple Lie groups.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaSpringer2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8988Lauret, Jorge Ruben; Ricci flow of homogeneous manifolds; Springer; Mathematische Zeitschrift; 274; 1-2; 3-2013; 373-4030025-5874enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-012-1075-zinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00209-012-1075-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:23Zoai:ri.conicet.gov.ar:11336/8988instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:23.334CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ricci flow of homogeneous manifolds |
title |
Ricci flow of homogeneous manifolds |
spellingShingle |
Ricci flow of homogeneous manifolds Lauret, Jorge Ruben Ricci Flow |
title_short |
Ricci flow of homogeneous manifolds |
title_full |
Ricci flow of homogeneous manifolds |
title_fullStr |
Ricci flow of homogeneous manifolds |
title_full_unstemmed |
Ricci flow of homogeneous manifolds |
title_sort |
Ricci flow of homogeneous manifolds |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben |
author_role |
author |
dc.subject.none.fl_str_mv |
Ricci Flow |
topic |
Ricci Flow |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present in this paper a general approach to study the Ricci flow on homogeneous manifolds. Our main tool is a dynamical system defined on a subset Hq,n of the variety of (q+n)-dimensional Lie algebras, parameterizing the space of all simply connected homogeneous spaces of dimension n with a q-dimensional isotropy, which is proved to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visualize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as well as to determine the type of the possible singularities. Ancient solutions arise naturally from the qualitative analysis of the evolution equation. We develop two examples in detail: a 2-parameter subspace of H1,3 reaching most of 3-dimensional geometries, and a 2-parameter family in H0,n of left-invariant metrics on n-dimensional compact and non-compact semisimple Lie groups. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
description |
We present in this paper a general approach to study the Ricci flow on homogeneous manifolds. Our main tool is a dynamical system defined on a subset Hq,n of the variety of (q+n)-dimensional Lie algebras, parameterizing the space of all simply connected homogeneous spaces of dimension n with a q-dimensional isotropy, which is proved to be equivalent in a precise sense to the Ricci flow. The approach is useful to better visualize the possible (nonflat) pointed limits of Ricci flow solutions, under diverse rescalings, as well as to determine the type of the possible singularities. Ancient solutions arise naturally from the qualitative analysis of the evolution equation. We develop two examples in detail: a 2-parameter subspace of H1,3 reaching most of 3-dimensional geometries, and a 2-parameter family in H0,n of left-invariant metrics on n-dimensional compact and non-compact semisimple Lie groups. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8988 Lauret, Jorge Ruben; Ricci flow of homogeneous manifolds; Springer; Mathematische Zeitschrift; 274; 1-2; 3-2013; 373-403 0025-5874 |
url |
http://hdl.handle.net/11336/8988 |
identifier_str_mv |
Lauret, Jorge Ruben; Ricci flow of homogeneous manifolds; Springer; Mathematische Zeitschrift; 274; 1-2; 3-2013; 373-403 0025-5874 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-012-1075-z info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00209-012-1075-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614493182623744 |
score |
13.070432 |