On Ricci negative solvmanifolds and their nilradicals
- Autores
- Deré, Jonas; Lauret, Jorge Ruben
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications.
Fil: Deré, Jonas. Katholikie Universiteit Leuven; Bélgica
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
NEGATIVE
RICCI
SOLVMANIFOLD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125070
Ver los metadatos del registro completo
id |
CONICETDig_3adca96e5e92566f41982ff85e5c1686 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125070 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Ricci negative solvmanifolds and their nilradicalsDeré, JonasLauret, Jorge RubenNEGATIVERICCISOLVMANIFOLDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications.Fil: Deré, Jonas. Katholikie Universiteit Leuven; BélgicaFil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaWiley VCH Verlag2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125070Deré, Jonas; Lauret, Jorge Ruben; On Ricci negative solvmanifolds and their nilradicals; Wiley VCH Verlag; Mathematische Nachrichten; 292; 7; 7-2019; 1462-14810025-584X1522-2616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1709.10342info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201700455info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.201700455info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:59Zoai:ri.conicet.gov.ar:11336/125070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:59.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Ricci negative solvmanifolds and their nilradicals |
title |
On Ricci negative solvmanifolds and their nilradicals |
spellingShingle |
On Ricci negative solvmanifolds and their nilradicals Deré, Jonas NEGATIVE RICCI SOLVMANIFOLD |
title_short |
On Ricci negative solvmanifolds and their nilradicals |
title_full |
On Ricci negative solvmanifolds and their nilradicals |
title_fullStr |
On Ricci negative solvmanifolds and their nilradicals |
title_full_unstemmed |
On Ricci negative solvmanifolds and their nilradicals |
title_sort |
On Ricci negative solvmanifolds and their nilradicals |
dc.creator.none.fl_str_mv |
Deré, Jonas Lauret, Jorge Ruben |
author |
Deré, Jonas |
author_facet |
Deré, Jonas Lauret, Jorge Ruben |
author_role |
author |
author2 |
Lauret, Jorge Ruben |
author2_role |
author |
dc.subject.none.fl_str_mv |
NEGATIVE RICCI SOLVMANIFOLD |
topic |
NEGATIVE RICCI SOLVMANIFOLD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications. Fil: Deré, Jonas. Katholikie Universiteit Leuven; Bélgica Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125070 Deré, Jonas; Lauret, Jorge Ruben; On Ricci negative solvmanifolds and their nilradicals; Wiley VCH Verlag; Mathematische Nachrichten; 292; 7; 7-2019; 1462-1481 0025-584X 1522-2616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125070 |
identifier_str_mv |
Deré, Jonas; Lauret, Jorge Ruben; On Ricci negative solvmanifolds and their nilradicals; Wiley VCH Verlag; Mathematische Nachrichten; 292; 7; 7-2019; 1462-1481 0025-584X 1522-2616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1709.10342 info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201700455 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.201700455 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980927748177920 |
score |
12.993085 |