On the Chern-Ricci flow and its solitons for Lie groups

Autores
Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Rodriguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
Chern-Ricci
Flow
Lie Groups
Solitons
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51847

id CONICETDig_cb364a11845f9516681fdaf037d819ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/51847
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the Chern-Ricci flow and its solitons for Lie groupsLauret, Jorge RubenRodriguez Valencia, Edwin AlejandroChern-RicciFlowLie GroupsSolitonshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Rodriguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaWiley VCH Verlag2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51847Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-15260025-584XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201300333info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201300333info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:39Zoai:ri.conicet.gov.ar:11336/51847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:39.976CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the Chern-Ricci flow and its solitons for Lie groups
title On the Chern-Ricci flow and its solitons for Lie groups
spellingShingle On the Chern-Ricci flow and its solitons for Lie groups
Lauret, Jorge Ruben
Chern-Ricci
Flow
Lie Groups
Solitons
title_short On the Chern-Ricci flow and its solitons for Lie groups
title_full On the Chern-Ricci flow and its solitons for Lie groups
title_fullStr On the Chern-Ricci flow and its solitons for Lie groups
title_full_unstemmed On the Chern-Ricci flow and its solitons for Lie groups
title_sort On the Chern-Ricci flow and its solitons for Lie groups
dc.creator.none.fl_str_mv Lauret, Jorge Ruben
Rodriguez Valencia, Edwin Alejandro
author Lauret, Jorge Ruben
author_facet Lauret, Jorge Ruben
Rodriguez Valencia, Edwin Alejandro
author_role author
author2 Rodriguez Valencia, Edwin Alejandro
author2_role author
dc.subject.none.fl_str_mv Chern-Ricci
Flow
Lie Groups
Solitons
topic Chern-Ricci
Flow
Lie Groups
Solitons
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Rodriguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51847
Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-1526
0025-584X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51847
identifier_str_mv Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-1526
0025-584X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201300333
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201300333
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613222722699264
score 13.070432