On the Chern-Ricci flow and its solitons for Lie groups
- Autores
- Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Rodriguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
Chern-Ricci
Flow
Lie Groups
Solitons - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/51847
Ver los metadatos del registro completo
id |
CONICETDig_cb364a11845f9516681fdaf037d819ce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/51847 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Chern-Ricci flow and its solitons for Lie groupsLauret, Jorge RubenRodriguez Valencia, Edwin AlejandroChern-RicciFlowLie GroupsSolitonshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Rodriguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaWiley VCH Verlag2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51847Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-15260025-584XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201300333info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201300333info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:39Zoai:ri.conicet.gov.ar:11336/51847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:39.976CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Chern-Ricci flow and its solitons for Lie groups |
title |
On the Chern-Ricci flow and its solitons for Lie groups |
spellingShingle |
On the Chern-Ricci flow and its solitons for Lie groups Lauret, Jorge Ruben Chern-Ricci Flow Lie Groups Solitons |
title_short |
On the Chern-Ricci flow and its solitons for Lie groups |
title_full |
On the Chern-Ricci flow and its solitons for Lie groups |
title_fullStr |
On the Chern-Ricci flow and its solitons for Lie groups |
title_full_unstemmed |
On the Chern-Ricci flow and its solitons for Lie groups |
title_sort |
On the Chern-Ricci flow and its solitons for Lie groups |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben Rodriguez Valencia, Edwin Alejandro |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben Rodriguez Valencia, Edwin Alejandro |
author_role |
author |
author2 |
Rodriguez Valencia, Edwin Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Chern-Ricci Flow Lie Groups Solitons |
topic |
Chern-Ricci Flow Lie Groups Solitons |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Rodriguez Valencia, Edwin Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
This paper is concerned with Chern-Ricci flow evolution of left-invariant hermitian structures on Lie groups. We study the behavior of a solution, as t is approaching the first time singularity, by rescaling in order to prevent collapsing and obtain convergence in the pointed (or Cheeger-Gromov) sense to a Chern-Ricci soliton. We give some results on the Chern-Ricci form and the Lie group structure of the pointed limit in terms of the starting hermitian metric and, as an application, we obtain a complete picture for the class of solvable Lie groups having a codimension one normal abelian subgroup. We have also found a Chern-Ricci soliton hermitian metric on most of the complex surfaces which are solvmanifolds, including an unexpected shrinking soliton example. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/51847 Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-1526 0025-584X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/51847 |
identifier_str_mv |
Lauret, Jorge Ruben; Rodriguez Valencia, Edwin Alejandro; On the Chern-Ricci flow and its solitons for Lie groups; Wiley VCH Verlag; Mathematische Nachrichten; 288; 13; 9-2015; 1512-1526 0025-584X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/mana.201300333 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201300333 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613222722699264 |
score |
13.070432 |