Non-solvable Lie groups with negative Ricci curvature
- Autores
- Lauret, Emilio Agustin; Will, Cynthia Eugenia
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Until a couple of years ago, the only known examples of Lie groups admitting left-invariant metrics with negative Ricci curvature were either solvable or semisimple.We use a general construction from a previous article of the second named author to produce a large number of examples with compact Levi factor. Given a compact semisimple real Lie algebra u and a real representation π satisfying some technical properties, the construction returns a metric Lie algebra (u,π) with negative Ricci operator. In this paper, when u is assumed to be simple, we prove that (u,π) admits a metric having negative Ricci curvature for all but finitely many finite-dimensional irreducible representations of (Formula presented.), regarded as a real representation of u. We also prove in the last section a more general result where the nilradical is not abelian, as it is in every (u,π).
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina
Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina - Materia
-
Ricci curvature
Lie algebras
Representations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143399
Ver los metadatos del registro completo
id |
CONICETDig_b7dd0b7ed36273f7a16dbba1ac50a0d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143399 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-solvable Lie groups with negative Ricci curvatureLauret, Emilio AgustinWill, Cynthia EugeniaRicci curvatureLie algebrasRepresentationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Until a couple of years ago, the only known examples of Lie groups admitting left-invariant metrics with negative Ricci curvature were either solvable or semisimple.We use a general construction from a previous article of the second named author to produce a large number of examples with compact Levi factor. Given a compact semisimple real Lie algebra u and a real representation π satisfying some technical properties, the construction returns a metric Lie algebra (u,π) with negative Ricci operator. In this paper, when u is assumed to be simple, we prove that (u,π) admits a metric having negative Ricci curvature for all but finitely many finite-dimensional irreducible representations of (Formula presented.), regarded as a real representation of u. We also prove in the last section a more general result where the nilradical is not abelian, as it is in every (u,π).Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur; ArgentinaFil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; ArgentinaBirkhauser Boston Inc2020-06-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143399Lauret, Emilio Agustin; Will, Cynthia Eugenia; Non-solvable Lie groups with negative Ricci curvature; Birkhauser Boston Inc; Transformation Groups; 16-6-2020; 1-171083-43621531-586XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-020-09582-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-020-09582-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:16Zoai:ri.conicet.gov.ar:11336/143399instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:16.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-solvable Lie groups with negative Ricci curvature |
title |
Non-solvable Lie groups with negative Ricci curvature |
spellingShingle |
Non-solvable Lie groups with negative Ricci curvature Lauret, Emilio Agustin Ricci curvature Lie algebras Representations |
title_short |
Non-solvable Lie groups with negative Ricci curvature |
title_full |
Non-solvable Lie groups with negative Ricci curvature |
title_fullStr |
Non-solvable Lie groups with negative Ricci curvature |
title_full_unstemmed |
Non-solvable Lie groups with negative Ricci curvature |
title_sort |
Non-solvable Lie groups with negative Ricci curvature |
dc.creator.none.fl_str_mv |
Lauret, Emilio Agustin Will, Cynthia Eugenia |
author |
Lauret, Emilio Agustin |
author_facet |
Lauret, Emilio Agustin Will, Cynthia Eugenia |
author_role |
author |
author2 |
Will, Cynthia Eugenia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ricci curvature Lie algebras Representations |
topic |
Ricci curvature Lie algebras Representations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Until a couple of years ago, the only known examples of Lie groups admitting left-invariant metrics with negative Ricci curvature were either solvable or semisimple.We use a general construction from a previous article of the second named author to produce a large number of examples with compact Levi factor. Given a compact semisimple real Lie algebra u and a real representation π satisfying some technical properties, the construction returns a metric Lie algebra (u,π) with negative Ricci operator. In this paper, when u is assumed to be simple, we prove that (u,π) admits a metric having negative Ricci curvature for all but finitely many finite-dimensional irreducible representations of (Formula presented.), regarded as a real representation of u. We also prove in the last section a more general result where the nilradical is not abelian, as it is in every (u,π). Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur; Argentina Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba; Argentina |
description |
Until a couple of years ago, the only known examples of Lie groups admitting left-invariant metrics with negative Ricci curvature were either solvable or semisimple.We use a general construction from a previous article of the second named author to produce a large number of examples with compact Levi factor. Given a compact semisimple real Lie algebra u and a real representation π satisfying some technical properties, the construction returns a metric Lie algebra (u,π) with negative Ricci operator. In this paper, when u is assumed to be simple, we prove that (u,π) admits a metric having negative Ricci curvature for all but finitely many finite-dimensional irreducible representations of (Formula presented.), regarded as a real representation of u. We also prove in the last section a more general result where the nilradical is not abelian, as it is in every (u,π). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-16 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143399 Lauret, Emilio Agustin; Will, Cynthia Eugenia; Non-solvable Lie groups with negative Ricci curvature; Birkhauser Boston Inc; Transformation Groups; 16-6-2020; 1-17 1083-4362 1531-586X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143399 |
identifier_str_mv |
Lauret, Emilio Agustin; Will, Cynthia Eugenia; Non-solvable Lie groups with negative Ricci curvature; Birkhauser Boston Inc; Transformation Groups; 16-6-2020; 1-17 1083-4362 1531-586X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-020-09582-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00031-020-09582-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Boston Inc |
publisher.none.fl_str_mv |
Birkhauser Boston Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269950395285504 |
score |
13.13397 |