Post-training discriminative pruning for RBMs
- Autores
- Sánchez Gutiérrez, Máximo; Albornoz, Enrique Marcelo; Rufiner, Hugo Leonardo; Close, John Goddard
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network.
Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; México
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Fil: Close, John Goddard. Universidad Autónoma Metropolitana; México - Materia
-
RESTRICTED BOLTZMANN MACHINES
DISCRIMINATIVE INFORMATION
PRUNING
EMOTION CLASSIFICATION
PHONEME CLASSIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47032
Ver los metadatos del registro completo
id |
CONICETDig_e42b0114406be73357a0d2eb425d8362 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47032 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Post-training discriminative pruning for RBMsSánchez Gutiérrez, MáximoAlbornoz, Enrique MarceloRufiner, Hugo LeonardoClose, John GoddardRESTRICTED BOLTZMANN MACHINESDISCRIMINATIVE INFORMATIONPRUNINGEMOTION CLASSIFICATIONPHONEME CLASSIFICATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network.Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; MéxicoFil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Close, John Goddard. Universidad Autónoma Metropolitana; MéxicoSpringer2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47032Sánchez Gutiérrez, Máximo; Albornoz, Enrique Marcelo; Rufiner, Hugo Leonardo; Close, John Goddard; Post-training discriminative pruning for RBMs; Springer; Soft Computing; 8-20171432-76431433-7479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00500-017-2784-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-017-2784-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:09Zoai:ri.conicet.gov.ar:11336/47032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:09.649CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Post-training discriminative pruning for RBMs |
title |
Post-training discriminative pruning for RBMs |
spellingShingle |
Post-training discriminative pruning for RBMs Sánchez Gutiérrez, Máximo RESTRICTED BOLTZMANN MACHINES DISCRIMINATIVE INFORMATION PRUNING EMOTION CLASSIFICATION PHONEME CLASSIFICATION |
title_short |
Post-training discriminative pruning for RBMs |
title_full |
Post-training discriminative pruning for RBMs |
title_fullStr |
Post-training discriminative pruning for RBMs |
title_full_unstemmed |
Post-training discriminative pruning for RBMs |
title_sort |
Post-training discriminative pruning for RBMs |
dc.creator.none.fl_str_mv |
Sánchez Gutiérrez, Máximo Albornoz, Enrique Marcelo Rufiner, Hugo Leonardo Close, John Goddard |
author |
Sánchez Gutiérrez, Máximo |
author_facet |
Sánchez Gutiérrez, Máximo Albornoz, Enrique Marcelo Rufiner, Hugo Leonardo Close, John Goddard |
author_role |
author |
author2 |
Albornoz, Enrique Marcelo Rufiner, Hugo Leonardo Close, John Goddard |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
RESTRICTED BOLTZMANN MACHINES DISCRIMINATIVE INFORMATION PRUNING EMOTION CLASSIFICATION PHONEME CLASSIFICATION |
topic |
RESTRICTED BOLTZMANN MACHINES DISCRIMINATIVE INFORMATION PRUNING EMOTION CLASSIFICATION PHONEME CLASSIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network. Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; México Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina Fil: Close, John Goddard. Universidad Autónoma Metropolitana; México |
description |
One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47032 Sánchez Gutiérrez, Máximo; Albornoz, Enrique Marcelo; Rufiner, Hugo Leonardo; Close, John Goddard; Post-training discriminative pruning for RBMs; Springer; Soft Computing; 8-2017 1432-7643 1433-7479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47032 |
identifier_str_mv |
Sánchez Gutiérrez, Máximo; Albornoz, Enrique Marcelo; Rufiner, Hugo Leonardo; Close, John Goddard; Post-training discriminative pruning for RBMs; Springer; Soft Computing; 8-2017 1432-7643 1433-7479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00500-017-2784-3 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00500-017-2784-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613270623748096 |
score |
13.070432 |