Minimum classification error learning for sequential data in the wavelet domain
- Autores
- Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Hidden Markov Models
Hidden Markov Trees
Discriminative Training
Minimum Classification Error - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75184
Ver los metadatos del registro completo
id |
CONICETDig_a61a775f319cba2b3b3da4e0c08c2ac6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75184 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Minimum classification error learning for sequential data in the wavelet domainTomassi, Diego RodolfoMilone, Diego HumbertoForzani, Liliana MariaHidden Markov ModelsHidden Markov TreesDiscriminative TrainingMinimum Classification Errorhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; ArgentinaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElsevier2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75184Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-40100031-3203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-50HP2NC-2&_user=10&_coverDate=12/31/2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=62bc0b99e36a373dc3einfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2010.07.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:44Zoai:ri.conicet.gov.ar:11336/75184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:44.443CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Minimum classification error learning for sequential data in the wavelet domain |
title |
Minimum classification error learning for sequential data in the wavelet domain |
spellingShingle |
Minimum classification error learning for sequential data in the wavelet domain Tomassi, Diego Rodolfo Hidden Markov Models Hidden Markov Trees Discriminative Training Minimum Classification Error |
title_short |
Minimum classification error learning for sequential data in the wavelet domain |
title_full |
Minimum classification error learning for sequential data in the wavelet domain |
title_fullStr |
Minimum classification error learning for sequential data in the wavelet domain |
title_full_unstemmed |
Minimum classification error learning for sequential data in the wavelet domain |
title_sort |
Minimum classification error learning for sequential data in the wavelet domain |
dc.creator.none.fl_str_mv |
Tomassi, Diego Rodolfo Milone, Diego Humberto Forzani, Liliana Maria |
author |
Tomassi, Diego Rodolfo |
author_facet |
Tomassi, Diego Rodolfo Milone, Diego Humberto Forzani, Liliana Maria |
author_role |
author |
author2 |
Milone, Diego Humberto Forzani, Liliana Maria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hidden Markov Models Hidden Markov Trees Discriminative Training Minimum Classification Error |
topic |
Hidden Markov Models Hidden Markov Trees Discriminative Training Minimum Classification Error |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation. Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75184 Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-4010 0031-3203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75184 |
identifier_str_mv |
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-4010 0031-3203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-50HP2NC-2&_user=10&_coverDate=12/31/2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=62bc0b99e36a373dc3e info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2010.07.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269363417120768 |
score |
13.13397 |