Minimum classification error learning for sequential data in the wavelet domain

Autores
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Hidden Markov Models
Hidden Markov Trees
Discriminative Training
Minimum Classification Error
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/75184

id CONICETDig_a61a775f319cba2b3b3da4e0c08c2ac6
oai_identifier_str oai:ri.conicet.gov.ar:11336/75184
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Minimum classification error learning for sequential data in the wavelet domainTomassi, Diego RodolfoMilone, Diego HumbertoForzani, Liliana MariaHidden Markov ModelsHidden Markov TreesDiscriminative TrainingMinimum Classification Errorhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; ArgentinaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElsevier2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75184Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-40100031-3203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-50HP2NC-2&_user=10&_coverDate=12/31/2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=62bc0b99e36a373dc3einfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2010.07.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:44Zoai:ri.conicet.gov.ar:11336/75184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:44.443CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Minimum classification error learning for sequential data in the wavelet domain
title Minimum classification error learning for sequential data in the wavelet domain
spellingShingle Minimum classification error learning for sequential data in the wavelet domain
Tomassi, Diego Rodolfo
Hidden Markov Models
Hidden Markov Trees
Discriminative Training
Minimum Classification Error
title_short Minimum classification error learning for sequential data in the wavelet domain
title_full Minimum classification error learning for sequential data in the wavelet domain
title_fullStr Minimum classification error learning for sequential data in the wavelet domain
title_full_unstemmed Minimum classification error learning for sequential data in the wavelet domain
title_sort Minimum classification error learning for sequential data in the wavelet domain
dc.creator.none.fl_str_mv Tomassi, Diego Rodolfo
Milone, Diego Humberto
Forzani, Liliana Maria
author Tomassi, Diego Rodolfo
author_facet Tomassi, Diego Rodolfo
Milone, Diego Humberto
Forzani, Liliana Maria
author_role author
author2 Milone, Diego Humberto
Forzani, Liliana Maria
author2_role author
author
dc.subject.none.fl_str_mv Hidden Markov Models
Hidden Markov Trees
Discriminative Training
Minimum Classification Error
topic Hidden Markov Models
Hidden Markov Trees
Discriminative Training
Minimum Classification Error
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Milone, Diego Humberto. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Departamento de Informática. Laboratorio de Investigaciones en Señales e Inteligencia Computacional; Argentina
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description Wavelet analysis has found widespread use in signal processing and many classification tasks. Nevertheless, its use in dynamic pattern recognition have been much more restricted since most of wavelet models cannot handle variable length sequences properly. Recently, composite hidden Markov models which observe structured data in the wavelet domain were proposed to deal with this kind of sequences. In these models, hidden Markov trees account for local dynamics in a multiresolution framework, while standard hidden Markov models capture longer correlations in time. Despite these models have shown promising results in simple applications, only generative approaches have been used so far for parameter estimation. The goal of this work is to take a step forward in the development of dynamic pattern recognizers using wavelet features by introducing a new discriminative training method for this Markov models. The learning strategy relies on the minimum classification error approach and provides re-estimation formulas for fully non-tied models. Numerical experiments on phoneme recognition show important improvement over the recognition rate achieved by the same models trained using maximum likelihood estimation.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/75184
Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-4010
0031-3203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/75184
identifier_str_mv Tomassi, Diego Rodolfo; Milone, Diego Humberto; Forzani, Liliana Maria; Minimum classification error learning for sequential data in the wavelet domain; Elsevier; Pattern Recognition; 43; 12; 12-2010; 3998-4010
0031-3203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-50HP2NC-2&_user=10&_coverDate=12/31/2010&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=62bc0b99e36a373dc3e
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patcog.2010.07.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269363417120768
score 13.13397