Evolutionary cepstral coefficients
- Autores
- Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Goddard, John C.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Evolutionary algorithms provide flexibility and robustness required to find satisfactory solutions in complex search spaces. This is why they are successfully applied for solving real engineering problems. In this work we propose an algorithm to evolve a robust speech representation, using a dynamic data selection method for reducing the computational cost of the fitness computation while improving the generalisation capabilities. The most commonly used speech representation are the mel-frequency cepstral coefficients, which incorporate biologically inspired characteristics into artificial recognizers. Recent advances have been made with the introduction of alternatives to the classic mel scaled filterbank, improving the phoneme recognition performance in adverse conditions. In order to find an optimal filterbank, filter parameters such as the central and side frequencies are optimised. A hidden Markov model is used as the classifier for the evaluation of the fitness for each individual. Experiments were conducted using real and synthetic phoneme databases, considering different additive noise levels. Classification results show that the method accomplishes the task of finding an optimised filterbank for phoneme recognition, which provides robustness in adverse conditions.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Goddard, John C.. Universidad Autónoma Metropolitana; México - Materia
-
Automatic Speech Recognition
Cepstral Coefficients
Evolutionary Computation
Phoneme Classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74195
Ver los metadatos del registro completo
id |
CONICETDig_6dc08b84ad5c8ba61456d4e40cb1c1b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74195 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evolutionary cepstral coefficientsVignolo, Leandro DanielRufiner, Hugo LeonardoMilone, Diego HumbertoGoddard, John C.Automatic Speech RecognitionCepstral CoefficientsEvolutionary ComputationPhoneme Classificationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Evolutionary algorithms provide flexibility and robustness required to find satisfactory solutions in complex search spaces. This is why they are successfully applied for solving real engineering problems. In this work we propose an algorithm to evolve a robust speech representation, using a dynamic data selection method for reducing the computational cost of the fitness computation while improving the generalisation capabilities. The most commonly used speech representation are the mel-frequency cepstral coefficients, which incorporate biologically inspired characteristics into artificial recognizers. Recent advances have been made with the introduction of alternatives to the classic mel scaled filterbank, improving the phoneme recognition performance in adverse conditions. In order to find an optimal filterbank, filter parameters such as the central and side frequencies are optimised. A hidden Markov model is used as the classifier for the evaluation of the fitness for each individual. Experiments were conducted using real and synthetic phoneme databases, considering different additive noise levels. Classification results show that the method accomplishes the task of finding an optimised filterbank for phoneme recognition, which provides robustness in adverse conditions.Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Goddard, John C.. Universidad Autónoma Metropolitana; MéxicoElsevier Science2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74195Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Goddard, John C.; Evolutionary cepstral coefficients; Elsevier Science; Applied Soft Computing; 11; 4; 6-2011; 3419-34281568-4946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1568494611000226info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2011.01.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:06Zoai:ri.conicet.gov.ar:11336/74195instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:06.622CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evolutionary cepstral coefficients |
title |
Evolutionary cepstral coefficients |
spellingShingle |
Evolutionary cepstral coefficients Vignolo, Leandro Daniel Automatic Speech Recognition Cepstral Coefficients Evolutionary Computation Phoneme Classification |
title_short |
Evolutionary cepstral coefficients |
title_full |
Evolutionary cepstral coefficients |
title_fullStr |
Evolutionary cepstral coefficients |
title_full_unstemmed |
Evolutionary cepstral coefficients |
title_sort |
Evolutionary cepstral coefficients |
dc.creator.none.fl_str_mv |
Vignolo, Leandro Daniel Rufiner, Hugo Leonardo Milone, Diego Humberto Goddard, John C. |
author |
Vignolo, Leandro Daniel |
author_facet |
Vignolo, Leandro Daniel Rufiner, Hugo Leonardo Milone, Diego Humberto Goddard, John C. |
author_role |
author |
author2 |
Rufiner, Hugo Leonardo Milone, Diego Humberto Goddard, John C. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Automatic Speech Recognition Cepstral Coefficients Evolutionary Computation Phoneme Classification |
topic |
Automatic Speech Recognition Cepstral Coefficients Evolutionary Computation Phoneme Classification |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Evolutionary algorithms provide flexibility and robustness required to find satisfactory solutions in complex search spaces. This is why they are successfully applied for solving real engineering problems. In this work we propose an algorithm to evolve a robust speech representation, using a dynamic data selection method for reducing the computational cost of the fitness computation while improving the generalisation capabilities. The most commonly used speech representation are the mel-frequency cepstral coefficients, which incorporate biologically inspired characteristics into artificial recognizers. Recent advances have been made with the introduction of alternatives to the classic mel scaled filterbank, improving the phoneme recognition performance in adverse conditions. In order to find an optimal filterbank, filter parameters such as the central and side frequencies are optimised. A hidden Markov model is used as the classifier for the evaluation of the fitness for each individual. Experiments were conducted using real and synthetic phoneme databases, considering different additive noise levels. Classification results show that the method accomplishes the task of finding an optimised filterbank for phoneme recognition, which provides robustness in adverse conditions. Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Goddard, John C.. Universidad Autónoma Metropolitana; México |
description |
Evolutionary algorithms provide flexibility and robustness required to find satisfactory solutions in complex search spaces. This is why they are successfully applied for solving real engineering problems. In this work we propose an algorithm to evolve a robust speech representation, using a dynamic data selection method for reducing the computational cost of the fitness computation while improving the generalisation capabilities. The most commonly used speech representation are the mel-frequency cepstral coefficients, which incorporate biologically inspired characteristics into artificial recognizers. Recent advances have been made with the introduction of alternatives to the classic mel scaled filterbank, improving the phoneme recognition performance in adverse conditions. In order to find an optimal filterbank, filter parameters such as the central and side frequencies are optimised. A hidden Markov model is used as the classifier for the evaluation of the fitness for each individual. Experiments were conducted using real and synthetic phoneme databases, considering different additive noise levels. Classification results show that the method accomplishes the task of finding an optimised filterbank for phoneme recognition, which provides robustness in adverse conditions. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74195 Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Goddard, John C.; Evolutionary cepstral coefficients; Elsevier Science; Applied Soft Computing; 11; 4; 6-2011; 3419-3428 1568-4946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74195 |
identifier_str_mv |
Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Goddard, John C.; Evolutionary cepstral coefficients; Elsevier Science; Applied Soft Computing; 11; 4; 6-2011; 3419-3428 1568-4946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1568494611000226 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2011.01.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980442692648960 |
score |
12.993085 |