Learning when to classify for early text classification
- Autores
- Loyola, Juan Martin; Errecalde, Marcelo Luis; Escalante, Hugo Jair; Montes y Gómez, Manuel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.
Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Fisico Matematicas y Naturales. Departamento de Informatica; Argentina
Fil: Escalante, Hugo Jair. Instituto Nacional de Astrofísica, Óptica y Electrónica; México
Fil: Montes y Gómez, Manuel. Instituto Nacional de Astrofísica, Óptica y Electrónica; México
XXIII Congreso Argentino de Ciencias de la Computación
La Plata
Argentina
Universidad Nacional de La Plata. Facultad de Informática
Red de Universidades con Carreras en Informática - Materia
-
MACHINE LEARNING
EARLY TEXT CLASSIFICATION
CLASSIFICATION WITH PARTIAL INFORMATION
DECISION OF THE MOMENT OF CLASSIFICATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/262506
Ver los metadatos del registro completo
id |
CONICETDig_29d87a0404ee1f3a8267fc4366400961 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/262506 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning when to classify for early text classificationLoyola, Juan MartinErrecalde, Marcelo LuisEscalante, Hugo JairMontes y Gómez, ManuelMACHINE LEARNINGEARLY TEXT CLASSIFICATIONCLASSIFICATION WITH PARTIAL INFORMATIONDECISION OF THE MOMENT OF CLASSIFICATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Fisico Matematicas y Naturales. Departamento de Informatica; ArgentinaFil: Escalante, Hugo Jair. Instituto Nacional de Astrofísica, Óptica y Electrónica; MéxicoFil: Montes y Gómez, Manuel. Instituto Nacional de Astrofísica, Óptica y Electrónica; MéxicoXXIII Congreso Argentino de Ciencias de la ComputaciónLa PlataArgentinaUniversidad Nacional de La Plata. Facultad de InformáticaRed de Universidades con Carreras en InformáticaUniversidad Nacional de La Plata. Facultad de Informática2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/262506Learning when to classify for early text classification; XXIII Congreso Argentino de Ciencias de la Computación; La Plata; Argentina; 2017; 103-112978-950-34-1539-9CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/63498Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:58Zoai:ri.conicet.gov.ar:11336/262506instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:58.997CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning when to classify for early text classification |
title |
Learning when to classify for early text classification |
spellingShingle |
Learning when to classify for early text classification Loyola, Juan Martin MACHINE LEARNING EARLY TEXT CLASSIFICATION CLASSIFICATION WITH PARTIAL INFORMATION DECISION OF THE MOMENT OF CLASSIFICATION |
title_short |
Learning when to classify for early text classification |
title_full |
Learning when to classify for early text classification |
title_fullStr |
Learning when to classify for early text classification |
title_full_unstemmed |
Learning when to classify for early text classification |
title_sort |
Learning when to classify for early text classification |
dc.creator.none.fl_str_mv |
Loyola, Juan Martin Errecalde, Marcelo Luis Escalante, Hugo Jair Montes y Gómez, Manuel |
author |
Loyola, Juan Martin |
author_facet |
Loyola, Juan Martin Errecalde, Marcelo Luis Escalante, Hugo Jair Montes y Gómez, Manuel |
author_role |
author |
author2 |
Errecalde, Marcelo Luis Escalante, Hugo Jair Montes y Gómez, Manuel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
MACHINE LEARNING EARLY TEXT CLASSIFICATION CLASSIFICATION WITH PARTIAL INFORMATION DECISION OF THE MOMENT OF CLASSIFICATION |
topic |
MACHINE LEARNING EARLY TEXT CLASSIFICATION CLASSIFICATION WITH PARTIAL INFORMATION DECISION OF THE MOMENT OF CLASSIFICATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach. Fil: Loyola, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Errecalde, Marcelo Luis. Universidad Nacional de San Luis. Facultad de Ciencias Fisico Matematicas y Naturales. Departamento de Informatica; Argentina Fil: Escalante, Hugo Jair. Instituto Nacional de Astrofísica, Óptica y Electrónica; México Fil: Montes y Gómez, Manuel. Instituto Nacional de Astrofísica, Óptica y Electrónica; México XXIII Congreso Argentino de Ciencias de la Computación La Plata Argentina Universidad Nacional de La Plata. Facultad de Informática Red de Universidades con Carreras en Informática |
description |
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/262506 Learning when to classify for early text classification; XXIII Congreso Argentino de Ciencias de la Computación; La Plata; Argentina; 2017; 103-112 978-950-34-1539-9 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/262506 |
identifier_str_mv |
Learning when to classify for early text classification; XXIII Congreso Argentino de Ciencias de la Computación; La Plata; Argentina; 2017; 103-112 978-950-34-1539-9 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/63498 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informática |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613622640148480 |
score |
13.069144 |