Genetic wavelet packets for speech recognition
- Autores
- Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina - Materia
-
Phoneme Classification
Genetic Algorithms
Wrappers
Wavelet Packets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14698
Ver los metadatos del registro completo
id |
CONICETDig_0d223f24d913538d7d4983270b276f63 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14698 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Genetic wavelet packets for speech recognitionVignolo, Leandro DanielMilone, Diego HumbertoRufiner, Hugo LeonardoPhoneme ClassificationGenetic AlgorithmsWrappersWavelet Packetshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions.Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaElsevier2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14698Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Genetic wavelet packets for speech recognition; Elsevier; Expert Systems With Applications; 40; 6; 5-2013; 2350-23590957-4174enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.050info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:44Zoai:ri.conicet.gov.ar:11336/14698instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:45.154CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Genetic wavelet packets for speech recognition |
title |
Genetic wavelet packets for speech recognition |
spellingShingle |
Genetic wavelet packets for speech recognition Vignolo, Leandro Daniel Phoneme Classification Genetic Algorithms Wrappers Wavelet Packets |
title_short |
Genetic wavelet packets for speech recognition |
title_full |
Genetic wavelet packets for speech recognition |
title_fullStr |
Genetic wavelet packets for speech recognition |
title_full_unstemmed |
Genetic wavelet packets for speech recognition |
title_sort |
Genetic wavelet packets for speech recognition |
dc.creator.none.fl_str_mv |
Vignolo, Leandro Daniel Milone, Diego Humberto Rufiner, Hugo Leonardo |
author |
Vignolo, Leandro Daniel |
author_facet |
Vignolo, Leandro Daniel Milone, Diego Humberto Rufiner, Hugo Leonardo |
author_role |
author |
author2 |
Milone, Diego Humberto Rufiner, Hugo Leonardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Phoneme Classification Genetic Algorithms Wrappers Wavelet Packets |
topic |
Phoneme Classification Genetic Algorithms Wrappers Wavelet Packets |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions. Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina |
description |
The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14698 Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Genetic wavelet packets for speech recognition; Elsevier; Expert Systems With Applications; 40; 6; 5-2013; 2350-2359 0957-4174 |
url |
http://hdl.handle.net/11336/14698 |
identifier_str_mv |
Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Genetic wavelet packets for speech recognition; Elsevier; Expert Systems With Applications; 40; 6; 5-2013; 2350-2359 0957-4174 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.050 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011748 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613001091481600 |
score |
13.070432 |