Genetic wavelet packets for speech recognition

Autores
Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Materia
Phoneme Classification
Genetic Algorithms
Wrappers
Wavelet Packets
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14698

id CONICETDig_0d223f24d913538d7d4983270b276f63
oai_identifier_str oai:ri.conicet.gov.ar:11336/14698
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Genetic wavelet packets for speech recognitionVignolo, Leandro DanielMilone, Diego HumbertoRufiner, Hugo LeonardoPhoneme ClassificationGenetic AlgorithmsWrappersWavelet Packetshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions.Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; ArgentinaElsevier2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14698Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Genetic wavelet packets for speech recognition; Elsevier; Expert Systems With Applications; 40; 6; 5-2013; 2350-23590957-4174enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.050info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:44Zoai:ri.conicet.gov.ar:11336/14698instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:45.154CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Genetic wavelet packets for speech recognition
title Genetic wavelet packets for speech recognition
spellingShingle Genetic wavelet packets for speech recognition
Vignolo, Leandro Daniel
Phoneme Classification
Genetic Algorithms
Wrappers
Wavelet Packets
title_short Genetic wavelet packets for speech recognition
title_full Genetic wavelet packets for speech recognition
title_fullStr Genetic wavelet packets for speech recognition
title_full_unstemmed Genetic wavelet packets for speech recognition
title_sort Genetic wavelet packets for speech recognition
dc.creator.none.fl_str_mv Vignolo, Leandro Daniel
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author Vignolo, Leandro Daniel
author_facet Vignolo, Leandro Daniel
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author_role author
author2 Milone, Diego Humberto
Rufiner, Hugo Leonardo
author2_role author
author
dc.subject.none.fl_str_mv Phoneme Classification
Genetic Algorithms
Wrappers
Wavelet Packets
topic Phoneme Classification
Genetic Algorithms
Wrappers
Wavelet Packets
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions.
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas; Argentina
description The most widely used speech representation is based on the mel-frequency cepstral coefficients, which incorporates biologically inspired characteristics into artificial recognizers. However, the recognition performance with these features can still be enhanced, specially in adverse conditions. Recent advances have been made with the introduction of wavelet based representations for different kinds of signals, which have shown to improve the classification performance. However, the problem of finding an adequate wavelet based representation for a particular problem is still an important challenge. In this work we propose a genetic algorithm to evolve a speech representation, based on a non-orthogonal wavelet decomposition, for phoneme classification. The results, obtained for a set of spanish phonemes, show that the proposed genetic algorithm is able to find a representation that improves speech recognition results. Moreover, the optimized representation was evaluated in noise conditions.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14698
Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Genetic wavelet packets for speech recognition; Elsevier; Expert Systems With Applications; 40; 6; 5-2013; 2350-2359
0957-4174
url http://hdl.handle.net/11336/14698
identifier_str_mv Vignolo, Leandro Daniel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Genetic wavelet packets for speech recognition; Elsevier; Expert Systems With Applications; 40; 6; 5-2013; 2350-2359
0957-4174
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.050
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011748
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613001091481600
score 13.070432