A characterization of finite multipermutation solutions of the Yang-Baxter equation
- Autores
- Bachiller, David; Cedó, Ferran; Vendramin, Claudio Leandro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z.
Fil: Bachiller, David. Universitat Autònoma de Barcelona; España
Fil: Cedó, Ferran. Universitat Autònoma de Barcelona; España
Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
BRACE
ORDERED GROUPS
POLY-(INFINITE CYCLIC) GROUP
SET-THEORETIC SOLUTION
YANG-BAXTER EQUATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88480
Ver los metadatos del registro completo
id |
CONICETDig_58717fc7fcfcf1452920148d04cbeedd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88480 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A characterization of finite multipermutation solutions of the Yang-Baxter equationBachiller, DavidCedó, FerranVendramin, Claudio LeandroBRACEORDERED GROUPSPOLY-(INFINITE CYCLIC) GROUPSET-THEORETIC SOLUTIONYANG-BAXTER EQUATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z.Fil: Bachiller, David. Universitat Autònoma de Barcelona; EspañaFil: Cedó, Ferran. Universitat Autònoma de Barcelona; EspañaFil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaUniversitat Autònoma de Barcelona2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88480Bachiller, David; Cedó, Ferran; Vendramin, Claudio Leandro; A characterization of finite multipermutation solutions of the Yang-Baxter equation; Universitat Autònoma de Barcelona; Publicacions Matematiques; 62; 2; 7-2018; 641-6490214-1493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT6221809info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT6221809info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:28Zoai:ri.conicet.gov.ar:11336/88480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:29.03CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
spellingShingle |
A characterization of finite multipermutation solutions of the Yang-Baxter equation Bachiller, David BRACE ORDERED GROUPS POLY-(INFINITE CYCLIC) GROUP SET-THEORETIC SOLUTION YANG-BAXTER EQUATION |
title_short |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_full |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_fullStr |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_full_unstemmed |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
title_sort |
A characterization of finite multipermutation solutions of the Yang-Baxter equation |
dc.creator.none.fl_str_mv |
Bachiller, David Cedó, Ferran Vendramin, Claudio Leandro |
author |
Bachiller, David |
author_facet |
Bachiller, David Cedó, Ferran Vendramin, Claudio Leandro |
author_role |
author |
author2 |
Cedó, Ferran Vendramin, Claudio Leandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BRACE ORDERED GROUPS POLY-(INFINITE CYCLIC) GROUP SET-THEORETIC SOLUTION YANG-BAXTER EQUATION |
topic |
BRACE ORDERED GROUPS POLY-(INFINITE CYCLIC) GROUP SET-THEORETIC SOLUTION YANG-BAXTER EQUATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z. Fil: Bachiller, David. Universitat Autònoma de Barcelona; España Fil: Cedó, Ferran. Universitat Autònoma de Barcelona; España Fil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88480 Bachiller, David; Cedó, Ferran; Vendramin, Claudio Leandro; A characterization of finite multipermutation solutions of the Yang-Baxter equation; Universitat Autònoma de Barcelona; Publicacions Matematiques; 62; 2; 7-2018; 641-649 0214-1493 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88480 |
identifier_str_mv |
Bachiller, David; Cedó, Ferran; Vendramin, Claudio Leandro; A characterization of finite multipermutation solutions of the Yang-Baxter equation; Universitat Autònoma de Barcelona; Publicacions Matematiques; 62; 2; 7-2018; 641-649 0214-1493 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://mat.uab.cat/pubmat/articles/view_doi/10.5565/PUBLMAT6221809 info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT6221809 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613609990127616 |
score |
13.070432 |