Skew braces of size p2q II: Non-abelian type
- Autores
- Acri, Emiliano Francisco; Bonatto, Marco
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we enumerate the skew braces of non-abelian type of size p2q for p,q primes with q>2 by the classification of regular subgroups of the holomorph of the non-abelian groups of the same order. Since Crespo dealt with the case q=2, this paper completes the enumeration of skew braces of size p2q started in a previous work by the authors. In some cases, we provide also a structural description of the skew braces. As an application, we prove a conjecture posed by V. Bardakov, M. Neshchadim and M. Yadav.
Fil: Acri, Emiliano Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Bonatto, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
YANG-BAXTER EQUATION
SET-THEORETICAL SOLUTION
SKEW BRACE
HOPF-GALOIS EXTENSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/246415
Ver los metadatos del registro completo
id |
CONICETDig_0d6fc055fee679dc2e6d20b86e6a3714 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/246415 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Skew braces of size p2q II: Non-abelian typeAcri, Emiliano FranciscoBonatto, MarcoYANG-BAXTER EQUATIONSET-THEORETICAL SOLUTIONSKEW BRACEHOPF-GALOIS EXTENSIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we enumerate the skew braces of non-abelian type of size p2q for p,q primes with q>2 by the classification of regular subgroups of the holomorph of the non-abelian groups of the same order. Since Crespo dealt with the case q=2, this paper completes the enumeration of skew braces of size p2q started in a previous work by the authors. In some cases, we provide also a structural description of the skew braces. As an application, we prove a conjecture posed by V. Bardakov, M. Neshchadim and M. Yadav.Fil: Acri, Emiliano Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Bonatto, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorld Scientific2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246415Acri, Emiliano Francisco; Bonatto, Marco; Skew braces of size p2q II: Non-abelian type; World Scientific; Journal of Algebra and its Applications; 21; 3; 12-2020; 1-430219-4988CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498822500621info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498822500621info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.04232info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:36Zoai:ri.conicet.gov.ar:11336/246415instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:37.052CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Skew braces of size p2q II: Non-abelian type |
title |
Skew braces of size p2q II: Non-abelian type |
spellingShingle |
Skew braces of size p2q II: Non-abelian type Acri, Emiliano Francisco YANG-BAXTER EQUATION SET-THEORETICAL SOLUTION SKEW BRACE HOPF-GALOIS EXTENSION |
title_short |
Skew braces of size p2q II: Non-abelian type |
title_full |
Skew braces of size p2q II: Non-abelian type |
title_fullStr |
Skew braces of size p2q II: Non-abelian type |
title_full_unstemmed |
Skew braces of size p2q II: Non-abelian type |
title_sort |
Skew braces of size p2q II: Non-abelian type |
dc.creator.none.fl_str_mv |
Acri, Emiliano Francisco Bonatto, Marco |
author |
Acri, Emiliano Francisco |
author_facet |
Acri, Emiliano Francisco Bonatto, Marco |
author_role |
author |
author2 |
Bonatto, Marco |
author2_role |
author |
dc.subject.none.fl_str_mv |
YANG-BAXTER EQUATION SET-THEORETICAL SOLUTION SKEW BRACE HOPF-GALOIS EXTENSION |
topic |
YANG-BAXTER EQUATION SET-THEORETICAL SOLUTION SKEW BRACE HOPF-GALOIS EXTENSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we enumerate the skew braces of non-abelian type of size p2q for p,q primes with q>2 by the classification of regular subgroups of the holomorph of the non-abelian groups of the same order. Since Crespo dealt with the case q=2, this paper completes the enumeration of skew braces of size p2q started in a previous work by the authors. In some cases, we provide also a structural description of the skew braces. As an application, we prove a conjecture posed by V. Bardakov, M. Neshchadim and M. Yadav. Fil: Acri, Emiliano Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Bonatto, Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we enumerate the skew braces of non-abelian type of size p2q for p,q primes with q>2 by the classification of regular subgroups of the holomorph of the non-abelian groups of the same order. Since Crespo dealt with the case q=2, this paper completes the enumeration of skew braces of size p2q started in a previous work by the authors. In some cases, we provide also a structural description of the skew braces. As an application, we prove a conjecture posed by V. Bardakov, M. Neshchadim and M. Yadav. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/246415 Acri, Emiliano Francisco; Bonatto, Marco; Skew braces of size p2q II: Non-abelian type; World Scientific; Journal of Algebra and its Applications; 21; 3; 12-2020; 1-43 0219-4988 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/246415 |
identifier_str_mv |
Acri, Emiliano Francisco; Bonatto, Marco; Skew braces of size p2q II: Non-abelian type; World Scientific; Journal of Algebra and its Applications; 21; 3; 12-2020; 1-43 0219-4988 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219498822500621 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219498822500621 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.04232 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613508773183488 |
score |
13.070432 |