Gibbs measures over permutations of point processes with low density
- Autores
- Armendáriz, María Inés; Ferrari, Pablo Augusto; Frevenza Maestrone, Nicolas Federico
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a model of spatial random permutations over a discrete set of points. Formally, a permutation σ is sampled proportionally to the weight exp{−α∑_xV(σ(x)−x)}, where α>0 is the temperature and V is a non-negative and continuous potential. The most relevant case for physics is when V(x)=‖x‖^2, since it is related to Bose-Einstein condensation through a representation introduced by Feynman in 1953. In the context of statistical mechanics, the weights (1) define a probability when the set of points is finite, but the construction associated to an infinite set is not trivial and may fail without appropriate hypotheses. The first problem is to establish conditions for the existence of such a measure at infinite volume when the set of points is infinite. Once existence is derived, we are interested in establishing its uniqueness and the cycle structure of a typical permutation. We here consider the large temperature regime when the set of points is a Poisson point process in ℤ^d with intensity ρ∈(0,1/2), and the potential verifies some regularity conditions. In particular, we prove that if α is large enough, for almost every realization of the point process, there exists a unique Gibbs measure that concentrates on finite cycle permutations. We then extend these results to the continuous setting, when the set of points is given by a Poisson point process in ℝ^d with low enough intensity.
Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Frevenza Maestrone, Nicolas Federico. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
GIBBS MEASURES
PERMUTATIONS
FINITE CYCLES
POISSON POINT PROCESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/120189
Ver los metadatos del registro completo
id |
CONICETDig_e2a41d33a2a8c8720d8120be8385138a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/120189 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gibbs measures over permutations of point processes with low densityArmendáriz, María InésFerrari, Pablo AugustoFrevenza Maestrone, Nicolas FedericoGIBBS MEASURESPERMUTATIONSFINITE CYCLESPOISSON POINT PROCESShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a model of spatial random permutations over a discrete set of points. Formally, a permutation σ is sampled proportionally to the weight exp{−α∑_xV(σ(x)−x)}, where α>0 is the temperature and V is a non-negative and continuous potential. The most relevant case for physics is when V(x)=‖x‖^2, since it is related to Bose-Einstein condensation through a representation introduced by Feynman in 1953. In the context of statistical mechanics, the weights (1) define a probability when the set of points is finite, but the construction associated to an infinite set is not trivial and may fail without appropriate hypotheses. The first problem is to establish conditions for the existence of such a measure at infinite volume when the set of points is infinite. Once existence is derived, we are interested in establishing its uniqueness and the cycle structure of a typical permutation. We here consider the large temperature regime when the set of points is a Poisson point process in ℤ^d with intensity ρ∈(0,1/2), and the potential verifies some regularity conditions. In particular, we prove that if α is large enough, for almost every realization of the point process, there exists a unique Gibbs measure that concentrates on finite cycle permutations. We then extend these results to the continuous setting, when the set of points is given by a Poisson point process in ℝ^d with low enough intensity.Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Frevenza Maestrone, Nicolas Federico. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCornell University2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/120189Armendáriz, María Inés; Ferrari, Pablo Augusto; Frevenza Maestrone, Nicolas Federico; Gibbs measures over permutations of point processes with low density; Cornell University; arxiv.org; 4-2019; 1-252331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.03952info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:29Zoai:ri.conicet.gov.ar:11336/120189instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:29.967CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gibbs measures over permutations of point processes with low density |
title |
Gibbs measures over permutations of point processes with low density |
spellingShingle |
Gibbs measures over permutations of point processes with low density Armendáriz, María Inés GIBBS MEASURES PERMUTATIONS FINITE CYCLES POISSON POINT PROCESS |
title_short |
Gibbs measures over permutations of point processes with low density |
title_full |
Gibbs measures over permutations of point processes with low density |
title_fullStr |
Gibbs measures over permutations of point processes with low density |
title_full_unstemmed |
Gibbs measures over permutations of point processes with low density |
title_sort |
Gibbs measures over permutations of point processes with low density |
dc.creator.none.fl_str_mv |
Armendáriz, María Inés Ferrari, Pablo Augusto Frevenza Maestrone, Nicolas Federico |
author |
Armendáriz, María Inés |
author_facet |
Armendáriz, María Inés Ferrari, Pablo Augusto Frevenza Maestrone, Nicolas Federico |
author_role |
author |
author2 |
Ferrari, Pablo Augusto Frevenza Maestrone, Nicolas Federico |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GIBBS MEASURES PERMUTATIONS FINITE CYCLES POISSON POINT PROCESS |
topic |
GIBBS MEASURES PERMUTATIONS FINITE CYCLES POISSON POINT PROCESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a model of spatial random permutations over a discrete set of points. Formally, a permutation σ is sampled proportionally to the weight exp{−α∑_xV(σ(x)−x)}, where α>0 is the temperature and V is a non-negative and continuous potential. The most relevant case for physics is when V(x)=‖x‖^2, since it is related to Bose-Einstein condensation through a representation introduced by Feynman in 1953. In the context of statistical mechanics, the weights (1) define a probability when the set of points is finite, but the construction associated to an infinite set is not trivial and may fail without appropriate hypotheses. The first problem is to establish conditions for the existence of such a measure at infinite volume when the set of points is infinite. Once existence is derived, we are interested in establishing its uniqueness and the cycle structure of a typical permutation. We here consider the large temperature regime when the set of points is a Poisson point process in ℤ^d with intensity ρ∈(0,1/2), and the potential verifies some regularity conditions. In particular, we prove that if α is large enough, for almost every realization of the point process, there exists a unique Gibbs measure that concentrates on finite cycle permutations. We then extend these results to the continuous setting, when the set of points is given by a Poisson point process in ℝ^d with low enough intensity. Fil: Armendáriz, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Frevenza Maestrone, Nicolas Federico. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study a model of spatial random permutations over a discrete set of points. Formally, a permutation σ is sampled proportionally to the weight exp{−α∑_xV(σ(x)−x)}, where α>0 is the temperature and V is a non-negative and continuous potential. The most relevant case for physics is when V(x)=‖x‖^2, since it is related to Bose-Einstein condensation through a representation introduced by Feynman in 1953. In the context of statistical mechanics, the weights (1) define a probability when the set of points is finite, but the construction associated to an infinite set is not trivial and may fail without appropriate hypotheses. The first problem is to establish conditions for the existence of such a measure at infinite volume when the set of points is infinite. Once existence is derived, we are interested in establishing its uniqueness and the cycle structure of a typical permutation. We here consider the large temperature regime when the set of points is a Poisson point process in ℤ^d with intensity ρ∈(0,1/2), and the potential verifies some regularity conditions. In particular, we prove that if α is large enough, for almost every realization of the point process, there exists a unique Gibbs measure that concentrates on finite cycle permutations. We then extend these results to the continuous setting, when the set of points is given by a Poisson point process in ℝ^d with low enough intensity. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/120189 Armendáriz, María Inés; Ferrari, Pablo Augusto; Frevenza Maestrone, Nicolas Federico; Gibbs measures over permutations of point processes with low density; Cornell University; arxiv.org; 4-2019; 1-25 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/120189 |
identifier_str_mv |
Armendáriz, María Inés; Ferrari, Pablo Augusto; Frevenza Maestrone, Nicolas Federico; Gibbs measures over permutations of point processes with low density; Cornell University; arxiv.org; 4-2019; 1-25 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1904.03952 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614518931456000 |
score |
13.070432 |