Stability of gas measures under perturbations and discretizations
- Autores
- Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.
Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Gibbs Measures
Point Processes
Discretization
Perfect Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19456
Ver los metadatos del registro completo
id |
CONICETDig_debc2d27ac76ef51750abf9e50db1918 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19456 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stability of gas measures under perturbations and discretizationsFernández, RobertoGroisman, Pablo JoseSaglietti, Santiago JuanGibbs MeasuresPoint ProcessesDiscretizationPerfect Simulationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.Fil: Fernández, Roberto. Utrecht Univeristy; Países BajosFil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorld Scientific2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19456Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan; Stability of gas measures under perturbations and discretizations; World Scientific; Reviews In Mathematical Physics; 28; 10; 11-2016; 1-46; 16500220129-055XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0129055X16500227info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129055X16500227info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.04183info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:52Zoai:ri.conicet.gov.ar:11336/19456instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:52.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stability of gas measures under perturbations and discretizations |
title |
Stability of gas measures under perturbations and discretizations |
spellingShingle |
Stability of gas measures under perturbations and discretizations Fernández, Roberto Gibbs Measures Point Processes Discretization Perfect Simulation |
title_short |
Stability of gas measures under perturbations and discretizations |
title_full |
Stability of gas measures under perturbations and discretizations |
title_fullStr |
Stability of gas measures under perturbations and discretizations |
title_full_unstemmed |
Stability of gas measures under perturbations and discretizations |
title_sort |
Stability of gas measures under perturbations and discretizations |
dc.creator.none.fl_str_mv |
Fernández, Roberto Groisman, Pablo Jose Saglietti, Santiago Juan |
author |
Fernández, Roberto |
author_facet |
Fernández, Roberto Groisman, Pablo Jose Saglietti, Santiago Juan |
author_role |
author |
author2 |
Groisman, Pablo Jose Saglietti, Santiago Juan |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Gibbs Measures Point Processes Discretization Perfect Simulation |
topic |
Gibbs Measures Point Processes Discretization Perfect Simulation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions. Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19456 Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan; Stability of gas measures under perturbations and discretizations; World Scientific; Reviews In Mathematical Physics; 28; 10; 11-2016; 1-46; 1650022 0129-055X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19456 |
identifier_str_mv |
Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan; Stability of gas measures under perturbations and discretizations; World Scientific; Reviews In Mathematical Physics; 28; 10; 11-2016; 1-46; 1650022 0129-055X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129055X16500227 info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129055X16500227 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.04183 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613462068559872 |
score |
13.070432 |