Stability of gas measures under perturbations and discretizations

Autores
Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.
Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Gibbs Measures
Point Processes
Discretization
Perfect Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19456

id CONICETDig_debc2d27ac76ef51750abf9e50db1918
oai_identifier_str oai:ri.conicet.gov.ar:11336/19456
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stability of gas measures under perturbations and discretizationsFernández, RobertoGroisman, Pablo JoseSaglietti, Santiago JuanGibbs MeasuresPoint ProcessesDiscretizationPerfect Simulationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.Fil: Fernández, Roberto. Utrecht Univeristy; Países BajosFil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaWorld Scientific2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19456Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan; Stability of gas measures under perturbations and discretizations; World Scientific; Reviews In Mathematical Physics; 28; 10; 11-2016; 1-46; 16500220129-055XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0129055X16500227info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129055X16500227info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.04183info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:52Zoai:ri.conicet.gov.ar:11336/19456instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:52.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stability of gas measures under perturbations and discretizations
title Stability of gas measures under perturbations and discretizations
spellingShingle Stability of gas measures under perturbations and discretizations
Fernández, Roberto
Gibbs Measures
Point Processes
Discretization
Perfect Simulation
title_short Stability of gas measures under perturbations and discretizations
title_full Stability of gas measures under perturbations and discretizations
title_fullStr Stability of gas measures under perturbations and discretizations
title_full_unstemmed Stability of gas measures under perturbations and discretizations
title_sort Stability of gas measures under perturbations and discretizations
dc.creator.none.fl_str_mv Fernández, Roberto
Groisman, Pablo Jose
Saglietti, Santiago Juan
author Fernández, Roberto
author_facet Fernández, Roberto
Groisman, Pablo Jose
Saglietti, Santiago Juan
author_role author
author2 Groisman, Pablo Jose
Saglietti, Santiago Juan
author2_role author
author
dc.subject.none.fl_str_mv Gibbs Measures
Point Processes
Discretization
Perfect Simulation
topic Gibbs Measures
Point Processes
Discretization
Perfect Simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.
Fil: Fernández, Roberto. Utrecht Univeristy; Países Bajos
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saglietti, Santiago Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description For a general class of gas models — which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles — we determine a diluteness condition that implies: (1) uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19456
Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan; Stability of gas measures under perturbations and discretizations; World Scientific; Reviews In Mathematical Physics; 28; 10; 11-2016; 1-46; 1650022
0129-055X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19456
identifier_str_mv Fernández, Roberto; Groisman, Pablo Jose; Saglietti, Santiago Juan; Stability of gas measures under perturbations and discretizations; World Scientific; Reviews In Mathematical Physics; 28; 10; 11-2016; 1-46; 1650022
0129-055X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129055X16500227
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129055X16500227
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.04183
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613462068559872
score 13.070432