Point process analysis of geographical diffusion of news in Argentina
- Autores
- Garcia, Lucio Lorenzo; Tirabassi, Giulio; Masoller, Cristina; Balenzuela, Pablo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspapernews in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months. We classified the articles into 20 thematic axes and obtained a set of time series that capture daily newspaper attention on different topics in different provinces. Toanalyze the data, we use a point process approach. For each topic, n, and for all pairs of provinces, i and j, we use two measures to quantify the synchronicity of the events, Qs (i, j), which quantifies the number of events that occur almost simultaneously in i and j, and Qa (i, j), which quantifies the direction of news spreading. Our analysis unveils how fast the information diffusion process is, showing pairs of provinces with very similar and almost simultaneous temporal variations of media attention. On the other hand, we also calculate other measures computed from the raw time series, such as Granger Causality and Transfer Entropy, which do not perform well in this context because they often return opposite directions of information transfer. We interpret this as due to the characteristics of the data, which is highly non-stationary, and of the information diffusion process, which is very fast and probably acts at a sub-resolution time scale.
Fil: Garcia, Lucio Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Tirabassi, Giulio. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; España. Universidad de Girona; España
Fil: Masoller, Cristina. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; España
Fil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
Information difussion
Point process
Causality measures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274574
Ver los metadatos del registro completo
| id |
CONICETDig_f48e4d0a165c8ad903dfa65a414e84ce |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274574 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Point process analysis of geographical diffusion of news in ArgentinaGarcia, Lucio LorenzoTirabassi, GiulioMasoller, CristinaBalenzuela, PabloInformation difussionPoint processCausality measureshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspapernews in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months. We classified the articles into 20 thematic axes and obtained a set of time series that capture daily newspaper attention on different topics in different provinces. Toanalyze the data, we use a point process approach. For each topic, n, and for all pairs of provinces, i and j, we use two measures to quantify the synchronicity of the events, Qs (i, j), which quantifies the number of events that occur almost simultaneously in i and j, and Qa (i, j), which quantifies the direction of news spreading. Our analysis unveils how fast the information diffusion process is, showing pairs of provinces with very similar and almost simultaneous temporal variations of media attention. On the other hand, we also calculate other measures computed from the raw time series, such as Granger Causality and Transfer Entropy, which do not perform well in this context because they often return opposite directions of information transfer. We interpret this as due to the characteristics of the data, which is highly non-stationary, and of the information diffusion process, which is very fast and probably acts at a sub-resolution time scale.Fil: Garcia, Lucio Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Tirabassi, Giulio. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; España. Universidad de Girona; EspañaFil: Masoller, Cristina. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; EspañaFil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAmerican Institute of Physics2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274574Garcia, Lucio Lorenzo; Tirabassi, Giulio; Masoller, Cristina; Balenzuela, Pablo; Point process analysis of geographical diffusion of news in Argentina; American Institute of Physics; Chaos; 35; 1; 1-2025; 1-351054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/35/1/013135/3331491/Point-process-analysis-of-geographical-diffusioninfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0240799info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:24:58Zoai:ri.conicet.gov.ar:11336/274574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:24:59.169CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Point process analysis of geographical diffusion of news in Argentina |
| title |
Point process analysis of geographical diffusion of news in Argentina |
| spellingShingle |
Point process analysis of geographical diffusion of news in Argentina Garcia, Lucio Lorenzo Information difussion Point process Causality measures |
| title_short |
Point process analysis of geographical diffusion of news in Argentina |
| title_full |
Point process analysis of geographical diffusion of news in Argentina |
| title_fullStr |
Point process analysis of geographical diffusion of news in Argentina |
| title_full_unstemmed |
Point process analysis of geographical diffusion of news in Argentina |
| title_sort |
Point process analysis of geographical diffusion of news in Argentina |
| dc.creator.none.fl_str_mv |
Garcia, Lucio Lorenzo Tirabassi, Giulio Masoller, Cristina Balenzuela, Pablo |
| author |
Garcia, Lucio Lorenzo |
| author_facet |
Garcia, Lucio Lorenzo Tirabassi, Giulio Masoller, Cristina Balenzuela, Pablo |
| author_role |
author |
| author2 |
Tirabassi, Giulio Masoller, Cristina Balenzuela, Pablo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Information difussion Point process Causality measures |
| topic |
Information difussion Point process Causality measures |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspapernews in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months. We classified the articles into 20 thematic axes and obtained a set of time series that capture daily newspaper attention on different topics in different provinces. Toanalyze the data, we use a point process approach. For each topic, n, and for all pairs of provinces, i and j, we use two measures to quantify the synchronicity of the events, Qs (i, j), which quantifies the number of events that occur almost simultaneously in i and j, and Qa (i, j), which quantifies the direction of news spreading. Our analysis unveils how fast the information diffusion process is, showing pairs of provinces with very similar and almost simultaneous temporal variations of media attention. On the other hand, we also calculate other measures computed from the raw time series, such as Granger Causality and Transfer Entropy, which do not perform well in this context because they often return opposite directions of information transfer. We interpret this as due to the characteristics of the data, which is highly non-stationary, and of the information diffusion process, which is very fast and probably acts at a sub-resolution time scale. Fil: Garcia, Lucio Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Tirabassi, Giulio. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; España. Universidad de Girona; España Fil: Masoller, Cristina. Universidad Politécnica de Catalunya. Departament de Física Enginyeria; España Fil: Balenzuela, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
| description |
The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspapernews in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months. We classified the articles into 20 thematic axes and obtained a set of time series that capture daily newspaper attention on different topics in different provinces. Toanalyze the data, we use a point process approach. For each topic, n, and for all pairs of provinces, i and j, we use two measures to quantify the synchronicity of the events, Qs (i, j), which quantifies the number of events that occur almost simultaneously in i and j, and Qa (i, j), which quantifies the direction of news spreading. Our analysis unveils how fast the information diffusion process is, showing pairs of provinces with very similar and almost simultaneous temporal variations of media attention. On the other hand, we also calculate other measures computed from the raw time series, such as Granger Causality and Transfer Entropy, which do not perform well in this context because they often return opposite directions of information transfer. We interpret this as due to the characteristics of the data, which is highly non-stationary, and of the information diffusion process, which is very fast and probably acts at a sub-resolution time scale. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274574 Garcia, Lucio Lorenzo; Tirabassi, Giulio; Masoller, Cristina; Balenzuela, Pablo; Point process analysis of geographical diffusion of news in Argentina; American Institute of Physics; Chaos; 35; 1; 1-2025; 1-35 1054-1500 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274574 |
| identifier_str_mv |
Garcia, Lucio Lorenzo; Tirabassi, Giulio; Masoller, Cristina; Balenzuela, Pablo; Point process analysis of geographical diffusion of news in Argentina; American Institute of Physics; Chaos; 35; 1; 1-2025; 1-35 1054-1500 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/35/1/013135/3331491/Point-process-analysis-of-geographical-diffusion info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0240799 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Physics |
| publisher.none.fl_str_mv |
American Institute of Physics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977885390864384 |
| score |
13.084122 |