Gibbs random graphs on point processes
- Autores
- Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points.
Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pechersky, Eugene A.. Russian Academy of Sciences. Dobrushin Laboratory of Institute for Information Transmission Problems; Rusia
Fil: Sisko, Valentin V.. Universidade Federal Fluminense; Brasil
Fil: Yambartsev, Anatoly. Universidade de Sao Paulo; Brasil - Materia
-
Gibbs measures
Random graphs
Point processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15071
Ver los metadatos del registro completo
id |
CONICETDig_23a3cd89220a9339bb5acaed50088327 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15071 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gibbs random graphs on point processesFerrari, Pablo AugustoPechersky, Eugene A.Sisko, Valentin V.Yambartsev, AnatolyGibbs measuresRandom graphsPoint processeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points. <br />Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pechersky, Eugene A.. Russian Academy of Sciences. Dobrushin Laboratory of Institute for Information Transmission Problems; RusiaFil: Sisko, Valentin V.. Universidade Federal Fluminense; BrasilFil: Yambartsev, Anatoly. Universidade de Sao Paulo; BrasilAmerican Institute Of Physics2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15071Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly; Gibbs random graphs on point processes; American Institute Of Physics; Journal Of Mathematical Physics; 51; 11-2010; 1-9; 1133030022-2488enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3514605info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3514605info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:13Zoai:ri.conicet.gov.ar:11336/15071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:13.564CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gibbs random graphs on point processes |
title |
Gibbs random graphs on point processes |
spellingShingle |
Gibbs random graphs on point processes Ferrari, Pablo Augusto Gibbs measures Random graphs Point processes |
title_short |
Gibbs random graphs on point processes |
title_full |
Gibbs random graphs on point processes |
title_fullStr |
Gibbs random graphs on point processes |
title_full_unstemmed |
Gibbs random graphs on point processes |
title_sort |
Gibbs random graphs on point processes |
dc.creator.none.fl_str_mv |
Ferrari, Pablo Augusto Pechersky, Eugene A. Sisko, Valentin V. Yambartsev, Anatoly |
author |
Ferrari, Pablo Augusto |
author_facet |
Ferrari, Pablo Augusto Pechersky, Eugene A. Sisko, Valentin V. Yambartsev, Anatoly |
author_role |
author |
author2 |
Pechersky, Eugene A. Sisko, Valentin V. Yambartsev, Anatoly |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Gibbs measures Random graphs Point processes |
topic |
Gibbs measures Random graphs Point processes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points. <br /> Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pechersky, Eugene A.. Russian Academy of Sciences. Dobrushin Laboratory of Institute for Information Transmission Problems; Rusia Fil: Sisko, Valentin V.. Universidade Federal Fluminense; Brasil Fil: Yambartsev, Anatoly. Universidade de Sao Paulo; Brasil |
description |
Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points. <br /> |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15071 Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly; Gibbs random graphs on point processes; American Institute Of Physics; Journal Of Mathematical Physics; 51; 11-2010; 1-9; 113303 0022-2488 |
url |
http://hdl.handle.net/11336/15071 |
identifier_str_mv |
Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly; Gibbs random graphs on point processes; American Institute Of Physics; Journal Of Mathematical Physics; 51; 11-2010; 1-9; 113303 0022-2488 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3514605 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3514605 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083378952011776 |
score |
13.22299 |