Gibbs random graphs on point processes

Autores
Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points.

Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pechersky, Eugene A.. Russian Academy of Sciences. Dobrushin Laboratory of Institute for Information Transmission Problems; Rusia
Fil: Sisko, Valentin V.. Universidade Federal Fluminense; Brasil
Fil: Yambartsev, Anatoly. Universidade de Sao Paulo; Brasil
Materia
Gibbs measures
Random graphs
Point processes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15071

id CONICETDig_23a3cd89220a9339bb5acaed50088327
oai_identifier_str oai:ri.conicet.gov.ar:11336/15071
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gibbs random graphs on point processesFerrari, Pablo AugustoPechersky, Eugene A.Sisko, Valentin V.Yambartsev, AnatolyGibbs measuresRandom graphsPoint processeshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points. <br />Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pechersky, Eugene A.. Russian Academy of Sciences. Dobrushin Laboratory of Institute for Information Transmission Problems; RusiaFil: Sisko, Valentin V.. Universidade Federal Fluminense; BrasilFil: Yambartsev, Anatoly. Universidade de Sao Paulo; BrasilAmerican Institute Of Physics2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15071Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly; Gibbs random graphs on point processes; American Institute Of Physics; Journal Of Mathematical Physics; 51; 11-2010; 1-9; 1133030022-2488enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3514605info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3514605info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:13Zoai:ri.conicet.gov.ar:11336/15071instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:13.564CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gibbs random graphs on point processes
title Gibbs random graphs on point processes
spellingShingle Gibbs random graphs on point processes
Ferrari, Pablo Augusto
Gibbs measures
Random graphs
Point processes
title_short Gibbs random graphs on point processes
title_full Gibbs random graphs on point processes
title_fullStr Gibbs random graphs on point processes
title_full_unstemmed Gibbs random graphs on point processes
title_sort Gibbs random graphs on point processes
dc.creator.none.fl_str_mv Ferrari, Pablo Augusto
Pechersky, Eugene A.
Sisko, Valentin V.
Yambartsev, Anatoly
author Ferrari, Pablo Augusto
author_facet Ferrari, Pablo Augusto
Pechersky, Eugene A.
Sisko, Valentin V.
Yambartsev, Anatoly
author_role author
author2 Pechersky, Eugene A.
Sisko, Valentin V.
Yambartsev, Anatoly
author2_role author
author
author
dc.subject.none.fl_str_mv Gibbs measures
Random graphs
Point processes
topic Gibbs measures
Random graphs
Point processes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points. <br />
Fil: Ferrari, Pablo Augusto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pechersky, Eugene A.. Russian Academy of Sciences. Dobrushin Laboratory of Institute for Information Transmission Problems; Rusia
Fil: Sisko, Valentin V.. Universidade Federal Fluminense; Brasil
Fil: Yambartsev, Anatoly. Universidade de Sao Paulo; Brasil
description Consider a discrete locally finite subset G of Rd and the complete graph (G, E), with vertices G and edges E. We consider Gibbs measures on the set of sub-graphs with vertices G and edges E´ ⊂ E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when G is sampled from a homogeneous Poisson process; and (b) for a fixed G with sufficiently sparse points. <br />
publishDate 2010
dc.date.none.fl_str_mv 2010-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15071
Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly; Gibbs random graphs on point processes; American Institute Of Physics; Journal Of Mathematical Physics; 51; 11-2010; 1-9; 113303
0022-2488
url http://hdl.handle.net/11336/15071
identifier_str_mv Ferrari, Pablo Augusto; Pechersky, Eugene A.; Sisko, Valentin V.; Yambartsev, Anatoly; Gibbs random graphs on point processes; American Institute Of Physics; Journal Of Mathematical Physics; 51; 11-2010; 1-9; 113303
0022-2488
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3514605
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3514605
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083378952011776
score 13.22299