Finite Cycle Gibbs Measures on Permutations of Zd

Autores
Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.
Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; Brasil
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; Brasil
Materia
Random perturbation
Cycles
Loss netwoark
Gibbs measures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18945

id CONICETDig_286f5d45e8984aa9db0bea153b214f7e
oai_identifier_str oai:ri.conicet.gov.ar:11336/18945
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Finite Cycle Gibbs Measures on Permutations of ZdArmendariz, InésFerrari, Pablo AugustoGroisman, Pablo JoseLeonardi, Florencia GracielaRandom perturbationCyclesLoss netwoarkGibbs measureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; BrasilFil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; BrasilSpringer2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18945Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-12330022-4715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1169-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1169-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.6542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:27Zoai:ri.conicet.gov.ar:11336/18945instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:27.629CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Finite Cycle Gibbs Measures on Permutations of Zd
title Finite Cycle Gibbs Measures on Permutations of Zd
spellingShingle Finite Cycle Gibbs Measures on Permutations of Zd
Armendariz, Inés
Random perturbation
Cycles
Loss netwoark
Gibbs measures
title_short Finite Cycle Gibbs Measures on Permutations of Zd
title_full Finite Cycle Gibbs Measures on Permutations of Zd
title_fullStr Finite Cycle Gibbs Measures on Permutations of Zd
title_full_unstemmed Finite Cycle Gibbs Measures on Permutations of Zd
title_sort Finite Cycle Gibbs Measures on Permutations of Zd
dc.creator.none.fl_str_mv Armendariz, Inés
Ferrari, Pablo Augusto
Groisman, Pablo Jose
Leonardi, Florencia Graciela
author Armendariz, Inés
author_facet Armendariz, Inés
Ferrari, Pablo Augusto
Groisman, Pablo Jose
Leonardi, Florencia Graciela
author_role author
author2 Ferrari, Pablo Augusto
Groisman, Pablo Jose
Leonardi, Florencia Graciela
author2_role author
author
author
dc.subject.none.fl_str_mv Random perturbation
Cycles
Loss netwoark
Gibbs measures
topic Random perturbation
Cycles
Loss netwoark
Gibbs measures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.
Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; Brasil
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; Brasil
description We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18945
Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-1233
0022-4715
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18945
identifier_str_mv Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-1233
0022-4715
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1169-6
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1169-6
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.6542
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614385211801600
score 13.070432