Finite Cycle Gibbs Measures on Permutations of Zd
- Autores
- Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.
Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; Brasil
Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; Brasil - Materia
-
Random perturbation
Cycles
Loss netwoark
Gibbs measures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18945
Ver los metadatos del registro completo
id |
CONICETDig_286f5d45e8984aa9db0bea153b214f7e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18945 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite Cycle Gibbs Measures on Permutations of ZdArmendariz, InésFerrari, Pablo AugustoGroisman, Pablo JoseLeonardi, Florencia GracielaRandom perturbationCyclesLoss netwoarkGibbs measureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value.Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; BrasilFil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; BrasilSpringer2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18945Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-12330022-4715CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1169-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1169-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.6542info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:27Zoai:ri.conicet.gov.ar:11336/18945instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:27.629CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite Cycle Gibbs Measures on Permutations of Zd |
title |
Finite Cycle Gibbs Measures on Permutations of Zd |
spellingShingle |
Finite Cycle Gibbs Measures on Permutations of Zd Armendariz, Inés Random perturbation Cycles Loss netwoark Gibbs measures |
title_short |
Finite Cycle Gibbs Measures on Permutations of Zd |
title_full |
Finite Cycle Gibbs Measures on Permutations of Zd |
title_fullStr |
Finite Cycle Gibbs Measures on Permutations of Zd |
title_full_unstemmed |
Finite Cycle Gibbs Measures on Permutations of Zd |
title_sort |
Finite Cycle Gibbs Measures on Permutations of Zd |
dc.creator.none.fl_str_mv |
Armendariz, Inés Ferrari, Pablo Augusto Groisman, Pablo Jose Leonardi, Florencia Graciela |
author |
Armendariz, Inés |
author_facet |
Armendariz, Inés Ferrari, Pablo Augusto Groisman, Pablo Jose Leonardi, Florencia Graciela |
author_role |
author |
author2 |
Ferrari, Pablo Augusto Groisman, Pablo Jose Leonardi, Florencia Graciela |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Random perturbation Cycles Loss netwoark Gibbs measures |
topic |
Random perturbation Cycles Loss netwoark Gibbs measures |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value. Fil: Armendariz, Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidade de Sao Paulo; Brasil Fil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Leonardi, Florencia Graciela. Universidade de Sao Paulo; Brasil |
description |
We consider Gibbs distributions on the set of permutations of Zd associated to the Hamiltonian H(σ ) := x V(σ (x) − x), where σ is a permutation and V : Zd → R is a strictly convex potential. Call finite-cycle those permutations composed by finite cycles only. We give conditions on V ensuring that for large enough temperature α > 0 there exists a unique infinite volume ergodic Gibbs measure μα concentrating mass on finite-cycle permutations; this measure is equal to the thermodynamic limit of the specifications with identity boundary conditions. We construct μα as the unique invariant measure of a Markov process on the set of finite-cycle permutations that can be seen as a loss-network, a continuoustime birth and death process of cycles interacting by exclusion, an approach proposed by Fernández, Ferrari and Garcia. Define τv as the shift permutation τv(x) = x + v. In the Gaussian case V =·2, we show that for each v ∈ Zd , μα v given by μα v ( f ) = μα[ f (τv·)] is an ergodic Gibbs measure equal to the thermodynamic limit of the specifications with τv boundary conditions. For a general potential V, we prove the existence of Gibbs measures μα v when α is bigger than some v-dependent value. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18945 Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-1233 0022-4715 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18945 |
identifier_str_mv |
Armendariz, Inés; Ferrari, Pablo Augusto; Groisman, Pablo Jose; Leonardi, Florencia Graciela; Finite Cycle Gibbs Measures on Permutations of Zd; Springer; Journal Of Statistical Physics; 158; 6; 3-2015; 1213-1233 0022-4715 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10955-014-1169-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10955-014-1169-6 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1407.6542 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614385211801600 |
score |
13.070432 |