Convergence of an adaptive Kačanov FEM for quasi-linear problems
- Autores
- Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We design an adaptive finite element method to approximate the solutions of quasi-linear elliptic problems. The algorithm is based on a Kačanov iteration and a mesh adaptation step is performed after each linear solve. The method is thus inexact because we do not solve the discrete nonlinear problems exactly, but rather perform one iteration of a fixed point method (Kačanov), using the approximation of the previous mesh as an initial guess. The convergence of the method is proved for any reasonable marking strategy and starting from any initial mesh. We conclude with some numerical experiments that illustrate the theory.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina - Materia
-
Adaptive Finite Element Methods
Convergence
Nonlinear Stationary Conservation Laws - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75181
Ver los metadatos del registro completo
id |
CONICETDig_e250ed0aced9fb4fe8edf09a864f33aa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75181 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of an adaptive Kačanov FEM for quasi-linear problemsGarau, Eduardo MarioMorin, PedroZuppa, CarlosAdaptive Finite Element MethodsConvergenceNonlinear Stationary Conservation Lawshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We design an adaptive finite element method to approximate the solutions of quasi-linear elliptic problems. The algorithm is based on a Kačanov iteration and a mesh adaptation step is performed after each linear solve. The method is thus inexact because we do not solve the discrete nonlinear problems exactly, but rather perform one iteration of a fixed point method (Kačanov), using the approximation of the previous mesh as an initial guess. The convergence of the method is proved for any reasonable marking strategy and starting from any initial mesh. We conclude with some numerical experiments that illustrate the theory.Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Zuppa, Carlos. Universidad Nacional de San Luis; ArgentinaElsevier Science2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75181Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of an adaptive Kačanov FEM for quasi-linear problems; Elsevier Science; Applied Numerical Mathematics; 61; 4; 4-2011; 512-5290168-9274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apnum.2010.12.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:37Zoai:ri.conicet.gov.ar:11336/75181instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:37.739CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
title |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
spellingShingle |
Convergence of an adaptive Kačanov FEM for quasi-linear problems Garau, Eduardo Mario Adaptive Finite Element Methods Convergence Nonlinear Stationary Conservation Laws |
title_short |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
title_full |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
title_fullStr |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
title_full_unstemmed |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
title_sort |
Convergence of an adaptive Kačanov FEM for quasi-linear problems |
dc.creator.none.fl_str_mv |
Garau, Eduardo Mario Morin, Pedro Zuppa, Carlos |
author |
Garau, Eduardo Mario |
author_facet |
Garau, Eduardo Mario Morin, Pedro Zuppa, Carlos |
author_role |
author |
author2 |
Morin, Pedro Zuppa, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Adaptive Finite Element Methods Convergence Nonlinear Stationary Conservation Laws |
topic |
Adaptive Finite Element Methods Convergence Nonlinear Stationary Conservation Laws |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We design an adaptive finite element method to approximate the solutions of quasi-linear elliptic problems. The algorithm is based on a Kačanov iteration and a mesh adaptation step is performed after each linear solve. The method is thus inexact because we do not solve the discrete nonlinear problems exactly, but rather perform one iteration of a fixed point method (Kačanov), using the approximation of the previous mesh as an initial guess. The convergence of the method is proved for any reasonable marking strategy and starting from any initial mesh. We conclude with some numerical experiments that illustrate the theory. Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina |
description |
We design an adaptive finite element method to approximate the solutions of quasi-linear elliptic problems. The algorithm is based on a Kačanov iteration and a mesh adaptation step is performed after each linear solve. The method is thus inexact because we do not solve the discrete nonlinear problems exactly, but rather perform one iteration of a fixed point method (Kačanov), using the approximation of the previous mesh as an initial guess. The convergence of the method is proved for any reasonable marking strategy and starting from any initial mesh. We conclude with some numerical experiments that illustrate the theory. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75181 Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of an adaptive Kačanov FEM for quasi-linear problems; Elsevier Science; Applied Numerical Mathematics; 61; 4; 4-2011; 512-529 0168-9274 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75181 |
identifier_str_mv |
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of an adaptive Kačanov FEM for quasi-linear problems; Elsevier Science; Applied Numerical Mathematics; 61; 4; 4-2011; 512-529 0168-9274 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apnum.2010.12.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269531419967488 |
score |
13.13397 |