An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
- Autores
- Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.
Fil: Bänsch, Eberhard. Freie Universität Berlin;
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos - Materia
-
A POSTERIORI ERROR ESTIMATORS
ADAPTIVE MESH REFINEMENT
CONVERGENCE
DATA OSCILLATION
PERFORMANCE
QUASI-OPTIMAL MESHES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100627
Ver los metadatos del registro completo
id |
CONICETDig_a1193a80325c606adba84bfb2b83c9ae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100627 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup conditionBänsch, EberhardMorin, PedroNochetto, Ricardo HoracioA POSTERIORI ERROR ESTIMATORSADAPTIVE MESH REFINEMENTCONVERGENCEDATA OSCILLATIONPERFORMANCEQUASI-OPTIMAL MESHEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.Fil: Bänsch, Eberhard. Freie Universität Berlin; Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosSociety for Industrial and Applied Mathematics2002-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100627Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-12290036-1429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/S0036142901392134info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:52Zoai:ri.conicet.gov.ar:11336/100627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:52.841CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
title |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
spellingShingle |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition Bänsch, Eberhard A POSTERIORI ERROR ESTIMATORS ADAPTIVE MESH REFINEMENT CONVERGENCE DATA OSCILLATION PERFORMANCE QUASI-OPTIMAL MESHES |
title_short |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
title_full |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
title_fullStr |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
title_full_unstemmed |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
title_sort |
An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition |
dc.creator.none.fl_str_mv |
Bänsch, Eberhard Morin, Pedro Nochetto, Ricardo Horacio |
author |
Bänsch, Eberhard |
author_facet |
Bänsch, Eberhard Morin, Pedro Nochetto, Ricardo Horacio |
author_role |
author |
author2 |
Morin, Pedro Nochetto, Ricardo Horacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
A POSTERIORI ERROR ESTIMATORS ADAPTIVE MESH REFINEMENT CONVERGENCE DATA OSCILLATION PERFORMANCE QUASI-OPTIMAL MESHES |
topic |
A POSTERIORI ERROR ESTIMATORS ADAPTIVE MESH REFINEMENT CONVERGENCE DATA OSCILLATION PERFORMANCE QUASI-OPTIMAL MESHES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal. Fil: Bänsch, Eberhard. Freie Universität Berlin; Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos |
description |
We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100627 Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-1229 0036-1429 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100627 |
identifier_str_mv |
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-1229 0036-1429 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/S0036142901392134 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980977647812608 |
score |
12.993085 |