An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition

Autores
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.
Fil: Bänsch, Eberhard. Freie Universität Berlin;
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
Materia
A POSTERIORI ERROR ESTIMATORS
ADAPTIVE MESH REFINEMENT
CONVERGENCE
DATA OSCILLATION
PERFORMANCE
QUASI-OPTIMAL MESHES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100627

id CONICETDig_a1193a80325c606adba84bfb2b83c9ae
oai_identifier_str oai:ri.conicet.gov.ar:11336/100627
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup conditionBänsch, EberhardMorin, PedroNochetto, Ricardo HoracioA POSTERIORI ERROR ESTIMATORSADAPTIVE MESH REFINEMENTCONVERGENCEDATA OSCILLATIONPERFORMANCEQUASI-OPTIMAL MESHEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.Fil: Bänsch, Eberhard. Freie Universität Berlin; Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosSociety for Industrial and Applied Mathematics2002-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100627Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-12290036-1429CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/S0036142901392134info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:52Zoai:ri.conicet.gov.ar:11336/100627instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:52.841CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
title An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
spellingShingle An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
Bänsch, Eberhard
A POSTERIORI ERROR ESTIMATORS
ADAPTIVE MESH REFINEMENT
CONVERGENCE
DATA OSCILLATION
PERFORMANCE
QUASI-OPTIMAL MESHES
title_short An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
title_full An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
title_fullStr An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
title_full_unstemmed An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
title_sort An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition
dc.creator.none.fl_str_mv Bänsch, Eberhard
Morin, Pedro
Nochetto, Ricardo Horacio
author Bänsch, Eberhard
author_facet Bänsch, Eberhard
Morin, Pedro
Nochetto, Ricardo Horacio
author_role author
author2 Morin, Pedro
Nochetto, Ricardo Horacio
author2_role author
author
dc.subject.none.fl_str_mv A POSTERIORI ERROR ESTIMATORS
ADAPTIVE MESH REFINEMENT
CONVERGENCE
DATA OSCILLATION
PERFORMANCE
QUASI-OPTIMAL MESHES
topic A POSTERIORI ERROR ESTIMATORS
ADAPTIVE MESH REFINEMENT
CONVERGENCE
DATA OSCILLATION
PERFORMANCE
QUASI-OPTIMAL MESHES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.
Fil: Bänsch, Eberhard. Freie Universität Berlin;
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
description We introduce and study an adaptive finite element method (FEM) for the Stokes system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner iteration for velocity. We show linear convergence in terms of the outer iteration counter for the pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure the elements can be either discontinuous of degree k - 1 or continuous of degree k -1 and k. The popular Taylor-Hood family is the sole example of stable elements included in the theory, which in turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide consistent computational evidence that the resulting meshes are quasi-optimal.
publishDate 2002
dc.date.none.fl_str_mv 2002-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100627
Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-1229
0036-1429
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100627
identifier_str_mv Bänsch, Eberhard; Morin, Pedro; Nochetto, Ricardo Horacio; An adaptive Uzawa FEM for the Stokes problem: Convergence without the inf-sup condition; Society for Industrial and Applied Mathematics; Siam Journal On Numerical Analysis; 40; 4; 9-2002; 1207-1229
0036-1429
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1137/S0036142901392134
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980977647812608
score 12.993085