High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates
- Autores
- Bonito, Andrea; Cascón, José Manuel; Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a new AFEM for the Laplace–Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W∞1 and piecewise in a suitable Besov class embedded in C1 , α with α∈ (0 , 1 ]. The idea is to have the surface sufficiently well resolved in W∞1 relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W∞1 and PDE error in H1.
Fil: Bonito, Andrea. Texas A&M University; Estados Unidos
Fil: Cascón, José Manuel. Universidad de Salamanca; España
Fil: Mekchay, Khamron. Chulalongkorn University; Tailandia
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos - Materia
-
A POSTERIORI ERROR ESTIMATES
ADAPTIVE FINITE ELEMENT METHOD
CONVERGENCE RATES
HIGHER ORDER
LAPLACE–BELTRAMI OPERATOR
PARAMETRIC SURFACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70885
Ver los metadatos del registro completo
| id |
CONICETDig_4f7a354b69162ff3e3cebd8107d0fdce |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70885 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence RatesBonito, AndreaCascón, José ManuelMekchay, KhamronMorin, PedroNochetto, Ricardo HoracioA POSTERIORI ERROR ESTIMATESADAPTIVE FINITE ELEMENT METHODCONVERGENCE RATESHIGHER ORDERLAPLACE–BELTRAMI OPERATORPARAMETRIC SURFACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a new AFEM for the Laplace–Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W∞1 and piecewise in a suitable Besov class embedded in C1 , α with α∈ (0 , 1 ]. The idea is to have the surface sufficiently well resolved in W∞1 relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W∞1 and PDE error in H1.Fil: Bonito, Andrea. Texas A&M University; Estados UnidosFil: Cascón, José Manuel. Universidad de Salamanca; EspañaFil: Mekchay, Khamron. Chulalongkorn University; TailandiaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosSpringer2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70885Bonito, Andrea; Cascón, José Manuel; Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates; Springer; Foundations Of Computational Mathematics; 16; 6; 12-2016; 1473-15391615-33751615-3383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10208-016-9335-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s10208-016-9335-7info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.05019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:51:41Zoai:ri.conicet.gov.ar:11336/70885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:51:42.236CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| title |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| spellingShingle |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates Bonito, Andrea A POSTERIORI ERROR ESTIMATES ADAPTIVE FINITE ELEMENT METHOD CONVERGENCE RATES HIGHER ORDER LAPLACE–BELTRAMI OPERATOR PARAMETRIC SURFACES |
| title_short |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| title_full |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| title_fullStr |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| title_full_unstemmed |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| title_sort |
High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates |
| dc.creator.none.fl_str_mv |
Bonito, Andrea Cascón, José Manuel Mekchay, Khamron Morin, Pedro Nochetto, Ricardo Horacio |
| author |
Bonito, Andrea |
| author_facet |
Bonito, Andrea Cascón, José Manuel Mekchay, Khamron Morin, Pedro Nochetto, Ricardo Horacio |
| author_role |
author |
| author2 |
Cascón, José Manuel Mekchay, Khamron Morin, Pedro Nochetto, Ricardo Horacio |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
A POSTERIORI ERROR ESTIMATES ADAPTIVE FINITE ELEMENT METHOD CONVERGENCE RATES HIGHER ORDER LAPLACE–BELTRAMI OPERATOR PARAMETRIC SURFACES |
| topic |
A POSTERIORI ERROR ESTIMATES ADAPTIVE FINITE ELEMENT METHOD CONVERGENCE RATES HIGHER ORDER LAPLACE–BELTRAMI OPERATOR PARAMETRIC SURFACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a new AFEM for the Laplace–Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W∞1 and piecewise in a suitable Besov class embedded in C1 , α with α∈ (0 , 1 ]. The idea is to have the surface sufficiently well resolved in W∞1 relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W∞1 and PDE error in H1. Fil: Bonito, Andrea. Texas A&M University; Estados Unidos Fil: Cascón, José Manuel. Universidad de Salamanca; España Fil: Mekchay, Khamron. Chulalongkorn University; Tailandia Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos |
| description |
We present a new AFEM for the Laplace–Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally W∞1 and piecewise in a suitable Besov class embedded in C1 , α with α∈ (0 , 1 ]. The idea is to have the surface sufficiently well resolved in W∞1 relative to the current resolution of the PDE in H1. This gives rise to a conditional contraction property of the PDE module. We present a suitable approximation class and discuss its relation to Besov regularity of the surface, solution, and forcing. We prove optimal convergence rates for AFEM which are dictated by the worst decay rate of the surface error in W∞1 and PDE error in H1. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70885 Bonito, Andrea; Cascón, José Manuel; Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates; Springer; Foundations Of Computational Mathematics; 16; 6; 12-2016; 1473-1539 1615-3375 1615-3383 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/70885 |
| identifier_str_mv |
Bonito, Andrea; Cascón, José Manuel; Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; High-Order AFEM for the Laplace–Beltrami Operator: Convergence Rates; Springer; Foundations Of Computational Mathematics; 16; 6; 12-2016; 1473-1539 1615-3375 1615-3383 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10208-016-9335-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10208-016-9335-7 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.05019 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782204641804288 |
| score |
12.982451 |