Convergence rates for adaptive finite elements
- Autores
- Gaspoz, Fernando Daniel; Morin, Pedro
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we prove that it is possible to construct, using newest vertex bisection, meshes that equidistribute the error in the H1-norm whenever the function to be approximated can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points. This decomposition is usual in regularity results of partial differential equations. As a consequence, the meshes turn out to be quasi-optimal, and convergence rates for adaptive finite-element methods using Lagrange finite elements of any polynomial degree are obtained.
Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ADAPTIVE FINITE ELEMENTS
CONVERGENCE RATES
OPTIMALITY
REGULARITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/186275
Ver los metadatos del registro completo
id |
CONICETDig_cd210440a1de19fa99399b68aba811a8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/186275 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence rates for adaptive finite elementsGaspoz, Fernando DanielMorin, PedroADAPTIVE FINITE ELEMENTSCONVERGENCE RATESOPTIMALITYREGULARITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we prove that it is possible to construct, using newest vertex bisection, meshes that equidistribute the error in the H1-norm whenever the function to be approximated can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points. This decomposition is usual in regularity results of partial differential equations. As a consequence, the meshes turn out to be quasi-optimal, and convergence rates for adaptive finite-element methods using Lagrange finite elements of any polynomial degree are obtained.Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186275Gaspoz, Fernando Daniel; Morin, Pedro; Convergence rates for adaptive finite elements; Oxford University Press; Ima Journal Of Numerical Analysis; 29; 4; 12-2008; 917-9360272-4979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/29/4/917/671423info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drn039info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:21:10Zoai:ri.conicet.gov.ar:11336/186275instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:21:10.353CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence rates for adaptive finite elements |
title |
Convergence rates for adaptive finite elements |
spellingShingle |
Convergence rates for adaptive finite elements Gaspoz, Fernando Daniel ADAPTIVE FINITE ELEMENTS CONVERGENCE RATES OPTIMALITY REGULARITY |
title_short |
Convergence rates for adaptive finite elements |
title_full |
Convergence rates for adaptive finite elements |
title_fullStr |
Convergence rates for adaptive finite elements |
title_full_unstemmed |
Convergence rates for adaptive finite elements |
title_sort |
Convergence rates for adaptive finite elements |
dc.creator.none.fl_str_mv |
Gaspoz, Fernando Daniel Morin, Pedro |
author |
Gaspoz, Fernando Daniel |
author_facet |
Gaspoz, Fernando Daniel Morin, Pedro |
author_role |
author |
author2 |
Morin, Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
ADAPTIVE FINITE ELEMENTS CONVERGENCE RATES OPTIMALITY REGULARITY |
topic |
ADAPTIVE FINITE ELEMENTS CONVERGENCE RATES OPTIMALITY REGULARITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, we prove that it is possible to construct, using newest vertex bisection, meshes that equidistribute the error in the H1-norm whenever the function to be approximated can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points. This decomposition is usual in regularity results of partial differential equations. As a consequence, the meshes turn out to be quasi-optimal, and convergence rates for adaptive finite-element methods using Lagrange finite elements of any polynomial degree are obtained. Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this article, we prove that it is possible to construct, using newest vertex bisection, meshes that equidistribute the error in the H1-norm whenever the function to be approximated can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points. This decomposition is usual in regularity results of partial differential equations. As a consequence, the meshes turn out to be quasi-optimal, and convergence rates for adaptive finite-element methods using Lagrange finite elements of any polynomial degree are obtained. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/186275 Gaspoz, Fernando Daniel; Morin, Pedro; Convergence rates for adaptive finite elements; Oxford University Press; Ima Journal Of Numerical Analysis; 29; 4; 12-2008; 917-936 0272-4979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/186275 |
identifier_str_mv |
Gaspoz, Fernando Daniel; Morin, Pedro; Convergence rates for adaptive finite elements; Oxford University Press; Ima Journal Of Numerical Analysis; 29; 4; 12-2008; 917-936 0272-4979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/29/4/917/671423 info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/drn039 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981160809922560 |
score |
12.48226 |