Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type
- Autores
- Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina - Materia
-
Adaptive Finite Element Methods
Optimality
Quasilinear Elliptic Equations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60505
Ver los metadatos del registro completo
id |
CONICETDig_1dd948e556f2efeec55291a66b1de1bf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60505 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone typeGarau, Eduardo MarioMorin, PedroZuppa, CarlosAdaptive Finite Element MethodsOptimalityQuasilinear Elliptic Equationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and LipschitzFil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Zuppa, Carlos. Universidad Nacional de San Luis; ArgentinaGlobal Science Press2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60505Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type; Global Science Press; Numerical Mathematics-theory Methods And Applications; 5; 2; 5-2012; 131-1561004-8979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4208/nmtma.2012.m1023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:48Zoai:ri.conicet.gov.ar:11336/60505instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:49.278CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
title |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
spellingShingle |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type Garau, Eduardo Mario Adaptive Finite Element Methods Optimality Quasilinear Elliptic Equations |
title_short |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
title_full |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
title_fullStr |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
title_full_unstemmed |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
title_sort |
Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type |
dc.creator.none.fl_str_mv |
Garau, Eduardo Mario Morin, Pedro Zuppa, Carlos |
author |
Garau, Eduardo Mario |
author_facet |
Garau, Eduardo Mario Morin, Pedro Zuppa, Carlos |
author_role |
author |
author2 |
Morin, Pedro Zuppa, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Adaptive Finite Element Methods Optimality Quasilinear Elliptic Equations |
topic |
Adaptive Finite Element Methods Optimality Quasilinear Elliptic Equations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina |
description |
We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for a class of nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and Dörfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, analogous to the one used by Diening and Kreuzer (2008) and equivalent to the total error defined by Cascón et. al. (2008). This contraction implies linear convergence of the discrete solutions to the exact solution in the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and extend the theory from Cascón et. al. to a class of nonlinear problems which stem from strongly monotone and Lipschitz |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60505 Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type; Global Science Press; Numerical Mathematics-theory Methods And Applications; 5; 2; 5-2012; 131-156 1004-8979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60505 |
identifier_str_mv |
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Quasi-optimal convergence rate of an AFEM for quasi-linear problems of monotone type; Global Science Press; Numerical Mathematics-theory Methods And Applications; 5; 2; 5-2012; 131-156 1004-8979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4208/nmtma.2012.m1023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Global Science Press |
publisher.none.fl_str_mv |
Global Science Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270133523841024 |
score |
13.13397 |