Convergence of adaptive finite element methods for eigenvalue problems
- Autores
- Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina - Materia
-
Eigenvalue Problems
Adaptivity
Finite Elements
Convergence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84080
Ver los metadatos del registro completo
id |
CONICETDig_07ecdd47e294dd8ec0c5489a32f1c326 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84080 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of adaptive finite element methods for eigenvalue problemsGarau, Eduardo MarioMorin, PedroZuppa, CarlosEigenvalue ProblemsAdaptivityFinite ElementsConvergencehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Zuppa, Carlos. Universidad Nacional de San Luis; ArgentinaWorld Scientific2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84080Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of adaptive finite element methods for eigenvalue problems; World Scientific; Mathematical Models And Methods In Applied Sciences; 19; 5; 5-2009; 721-7470218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202509003590info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:00Zoai:ri.conicet.gov.ar:11336/84080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:00.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of adaptive finite element methods for eigenvalue problems |
title |
Convergence of adaptive finite element methods for eigenvalue problems |
spellingShingle |
Convergence of adaptive finite element methods for eigenvalue problems Garau, Eduardo Mario Eigenvalue Problems Adaptivity Finite Elements Convergence |
title_short |
Convergence of adaptive finite element methods for eigenvalue problems |
title_full |
Convergence of adaptive finite element methods for eigenvalue problems |
title_fullStr |
Convergence of adaptive finite element methods for eigenvalue problems |
title_full_unstemmed |
Convergence of adaptive finite element methods for eigenvalue problems |
title_sort |
Convergence of adaptive finite element methods for eigenvalue problems |
dc.creator.none.fl_str_mv |
Garau, Eduardo Mario Morin, Pedro Zuppa, Carlos |
author |
Garau, Eduardo Mario |
author_facet |
Garau, Eduardo Mario Morin, Pedro Zuppa, Carlos |
author_role |
author |
author2 |
Morin, Pedro Zuppa, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Eigenvalue Problems Adaptivity Finite Elements Convergence |
topic |
Eigenvalue Problems Adaptivity Finite Elements Convergence |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation. Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina |
description |
In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84080 Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of adaptive finite element methods for eigenvalue problems; World Scientific; Mathematical Models And Methods In Applied Sciences; 19; 5; 5-2009; 721-747 0218-2025 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84080 |
identifier_str_mv |
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of adaptive finite element methods for eigenvalue problems; World Scientific; Mathematical Models And Methods In Applied Sciences; 19; 5; 5-2009; 721-747 0218-2025 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202509003590 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980559099265024 |
score |
12.993085 |