Convergence of adaptive finite element methods for eigenvalue problems

Autores
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina
Materia
Eigenvalue Problems
Adaptivity
Finite Elements
Convergence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84080

id CONICETDig_07ecdd47e294dd8ec0c5489a32f1c326
oai_identifier_str oai:ri.conicet.gov.ar:11336/84080
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of adaptive finite element methods for eigenvalue problemsGarau, Eduardo MarioMorin, PedroZuppa, CarlosEigenvalue ProblemsAdaptivityFinite ElementsConvergencehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Zuppa, Carlos. Universidad Nacional de San Luis; ArgentinaWorld Scientific2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84080Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of adaptive finite element methods for eigenvalue problems; World Scientific; Mathematical Models And Methods In Applied Sciences; 19; 5; 5-2009; 721-7470218-2025CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202509003590info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:00Zoai:ri.conicet.gov.ar:11336/84080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:00.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of adaptive finite element methods for eigenvalue problems
title Convergence of adaptive finite element methods for eigenvalue problems
spellingShingle Convergence of adaptive finite element methods for eigenvalue problems
Garau, Eduardo Mario
Eigenvalue Problems
Adaptivity
Finite Elements
Convergence
title_short Convergence of adaptive finite element methods for eigenvalue problems
title_full Convergence of adaptive finite element methods for eigenvalue problems
title_fullStr Convergence of adaptive finite element methods for eigenvalue problems
title_full_unstemmed Convergence of adaptive finite element methods for eigenvalue problems
title_sort Convergence of adaptive finite element methods for eigenvalue problems
dc.creator.none.fl_str_mv Garau, Eduardo Mario
Morin, Pedro
Zuppa, Carlos
author Garau, Eduardo Mario
author_facet Garau, Eduardo Mario
Morin, Pedro
Zuppa, Carlos
author_role author
author2 Morin, Pedro
Zuppa, Carlos
author2_role author
author
dc.subject.none.fl_str_mv Eigenvalue Problems
Adaptivity
Finite Elements
Convergence
topic Eigenvalue Problems
Adaptivity
Finite Elements
Convergence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Zuppa, Carlos. Universidad Nacional de San Luis; Argentina
description In this paper we prove convergence of adaptive finite element methods for second-order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
publishDate 2009
dc.date.none.fl_str_mv 2009-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84080
Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of adaptive finite element methods for eigenvalue problems; World Scientific; Mathematical Models And Methods In Applied Sciences; 19; 5; 5-2009; 721-747
0218-2025
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84080
identifier_str_mv Garau, Eduardo Mario; Morin, Pedro; Zuppa, Carlos; Convergence of adaptive finite element methods for eigenvalue problems; World Scientific; Mathematical Models And Methods In Applied Sciences; 19; 5; 5-2009; 721-747
0218-2025
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202509003590
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980559099265024
score 12.993085