Weaker relatives of the bounded approximation property for a Banach operator ideal
- Autores
- Lassalle, Silvia Beatriz; Oja, Eve; Turco, Pablo Alejandro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fixed a Banach operator ideal A, we introduce and investigate two new approximation properties, which are strictly weaker than the bounded approximation property (BAP) for A of Lima et al. (2010). We call them the weak BAP for A and the local BAP for A, showing that the latter is in turn strictly weaker than the former. Under this framework, we address the question of approximation properties passing from dual spaces to underlying spaces. We relate the weak and local BAPs for A with approximation properties given by tensor norms and show that the Saphar BAP of order p is the weak BAP for the ideal of absolutely p*-summing operators, 1≤p≤∞, 1/p+1/p*=1.
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés; Argentina
Fil: Oja, Eve. Academia Scientiarum Estoniae; Estonia. University of Tartu; Estonia
Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Banach Operator Ideals
Bounded Approximation Properties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55541
Ver los metadatos del registro completo
id |
CONICETDig_ded521a14f4d364f77c68a84a2125036 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55541 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weaker relatives of the bounded approximation property for a Banach operator idealLassalle, Silvia BeatrizOja, EveTurco, Pablo AlejandroBanach Operator IdealsBounded Approximation Propertieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Fixed a Banach operator ideal A, we introduce and investigate two new approximation properties, which are strictly weaker than the bounded approximation property (BAP) for A of Lima et al. (2010). We call them the weak BAP for A and the local BAP for A, showing that the latter is in turn strictly weaker than the former. Under this framework, we address the question of approximation properties passing from dual spaces to underlying spaces. We relate the weak and local BAPs for A with approximation properties given by tensor norms and show that the Saphar BAP of order p is the weak BAP for the ideal of absolutely p*-summing operators, 1≤p≤∞, 1/p+1/p*=1.Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés; ArgentinaFil: Oja, Eve. Academia Scientiarum Estoniae; Estonia. University of Tartu; EstoniaFil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55541Lassalle, Silvia Beatriz; Oja, Eve; Turco, Pablo Alejandro; Weaker relatives of the bounded approximation property for a Banach operator ideal; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 205; 5-2016; 25-420021-9045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2016.01.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021904516000137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:29Zoai:ri.conicet.gov.ar:11336/55541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:30.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
title |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
spellingShingle |
Weaker relatives of the bounded approximation property for a Banach operator ideal Lassalle, Silvia Beatriz Banach Operator Ideals Bounded Approximation Properties |
title_short |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
title_full |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
title_fullStr |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
title_full_unstemmed |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
title_sort |
Weaker relatives of the bounded approximation property for a Banach operator ideal |
dc.creator.none.fl_str_mv |
Lassalle, Silvia Beatriz Oja, Eve Turco, Pablo Alejandro |
author |
Lassalle, Silvia Beatriz |
author_facet |
Lassalle, Silvia Beatriz Oja, Eve Turco, Pablo Alejandro |
author_role |
author |
author2 |
Oja, Eve Turco, Pablo Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Banach Operator Ideals Bounded Approximation Properties |
topic |
Banach Operator Ideals Bounded Approximation Properties |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fixed a Banach operator ideal A, we introduce and investigate two new approximation properties, which are strictly weaker than the bounded approximation property (BAP) for A of Lima et al. (2010). We call them the weak BAP for A and the local BAP for A, showing that the latter is in turn strictly weaker than the former. Under this framework, we address the question of approximation properties passing from dual spaces to underlying spaces. We relate the weak and local BAPs for A with approximation properties given by tensor norms and show that the Saphar BAP of order p is the weak BAP for the ideal of absolutely p*-summing operators, 1≤p≤∞, 1/p+1/p*=1. Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés; Argentina Fil: Oja, Eve. Academia Scientiarum Estoniae; Estonia. University of Tartu; Estonia Fil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Fixed a Banach operator ideal A, we introduce and investigate two new approximation properties, which are strictly weaker than the bounded approximation property (BAP) for A of Lima et al. (2010). We call them the weak BAP for A and the local BAP for A, showing that the latter is in turn strictly weaker than the former. Under this framework, we address the question of approximation properties passing from dual spaces to underlying spaces. We relate the weak and local BAPs for A with approximation properties given by tensor norms and show that the Saphar BAP of order p is the weak BAP for the ideal of absolutely p*-summing operators, 1≤p≤∞, 1/p+1/p*=1. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55541 Lassalle, Silvia Beatriz; Oja, Eve; Turco, Pablo Alejandro; Weaker relatives of the bounded approximation property for a Banach operator ideal; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 205; 5-2016; 25-42 0021-9045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55541 |
identifier_str_mv |
Lassalle, Silvia Beatriz; Oja, Eve; Turco, Pablo Alejandro; Weaker relatives of the bounded approximation property for a Banach operator ideal; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 205; 5-2016; 25-42 0021-9045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2016.01.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021904516000137 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269758711398400 |
score |
13.13397 |