Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators

Autores
Cabral, Enrique Adrian; Martín Reyes, Francisco Javier
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider positive invertible Lamperti operators Tf(x)=h(x)Φf(x) such that Φ has no periodic part. Let An,T be the sequence of averages of T and MT the ergodic maximal operator. It is obvious that if MT is bounded on some Lp, 1
Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Malaga. Facultad de Ciencias; España
Materia
CESÀRO BOUNDED OPERATORS
ERGODIC MAXIMAL OPERATOR
LAMPERTI OPERATORS
MEAN BOUNDED OPERATORS
ONE-SIDED WEIGHTS
SHARP BOUND
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86791

id CONICETDig_573100c09c05affb287007a93bc39f71
oai_identifier_str oai:ri.conicet.gov.ar:11336/86791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sharp bound for the ergodic maximal operator associated to Cesàro bounded operatorsCabral, Enrique AdrianMartín Reyes, Francisco JavierCESÀRO BOUNDED OPERATORSERGODIC MAXIMAL OPERATORLAMPERTI OPERATORSMEAN BOUNDED OPERATORSONE-SIDED WEIGHTSSHARP BOUNDhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider positive invertible Lamperti operators Tf(x)=h(x)Φf(x) such that Φ has no periodic part. Let An,T be the sequence of averages of T and MT the ergodic maximal operator. It is obvious that if MT is bounded on some Lp, 1Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Malaga. Facultad de Ciencias; EspañaAcademic Press Inc Elsevier Science2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86791Cabral, Enrique Adrian; Martín Reyes, Francisco Javier; Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 462; 1; 6-2018; 648-6640022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X18301276info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.02.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:14Zoai:ri.conicet.gov.ar:11336/86791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:14.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
title Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
spellingShingle Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
Cabral, Enrique Adrian
CESÀRO BOUNDED OPERATORS
ERGODIC MAXIMAL OPERATOR
LAMPERTI OPERATORS
MEAN BOUNDED OPERATORS
ONE-SIDED WEIGHTS
SHARP BOUND
title_short Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
title_full Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
title_fullStr Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
title_full_unstemmed Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
title_sort Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators
dc.creator.none.fl_str_mv Cabral, Enrique Adrian
Martín Reyes, Francisco Javier
author Cabral, Enrique Adrian
author_facet Cabral, Enrique Adrian
Martín Reyes, Francisco Javier
author_role author
author2 Martín Reyes, Francisco Javier
author2_role author
dc.subject.none.fl_str_mv CESÀRO BOUNDED OPERATORS
ERGODIC MAXIMAL OPERATOR
LAMPERTI OPERATORS
MEAN BOUNDED OPERATORS
ONE-SIDED WEIGHTS
SHARP BOUND
topic CESÀRO BOUNDED OPERATORS
ERGODIC MAXIMAL OPERATOR
LAMPERTI OPERATORS
MEAN BOUNDED OPERATORS
ONE-SIDED WEIGHTS
SHARP BOUND
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider positive invertible Lamperti operators Tf(x)=h(x)Φf(x) such that Φ has no periodic part. Let An,T be the sequence of averages of T and MT the ergodic maximal operator. It is obvious that if MT is bounded on some Lp, 1
Fil: Cabral, Enrique Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Malaga. Facultad de Ciencias; España
description We consider positive invertible Lamperti operators Tf(x)=h(x)Φf(x) such that Φ has no periodic part. Let An,T be the sequence of averages of T and MT the ergodic maximal operator. It is obvious that if MT is bounded on some Lp, 1
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86791
Cabral, Enrique Adrian; Martín Reyes, Francisco Javier; Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 462; 1; 6-2018; 648-664
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86791
identifier_str_mv Cabral, Enrique Adrian; Martín Reyes, Francisco Javier; Sharp bound for the ergodic maximal operator associated to Cesàro bounded operators; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 462; 1; 6-2018; 648-664
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X18301276
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.02.010
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613736783937536
score 13.070432