Every Banach ideal of polynomials is compatible with an operator ideal

Autores
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Polynomial Ideals
Operator Ideals
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19936

id CONICETDig_950db5057ad5d236087f2da47da98d6c
oai_identifier_str oai:ri.conicet.gov.ar:11336/19936
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Every Banach ideal of polynomials is compatible with an operator idealCarando, Daniel GermánDimant, Veronica IsabelMuro, Luis Santiago MiguelPolynomial IdealsOperator Idealshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer Wien2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19936Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-140026-92551436-5081CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-010-0255-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00605-010-0255-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1009.1064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:56Zoai:ri.conicet.gov.ar:11336/19936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:56.83CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Every Banach ideal of polynomials is compatible with an operator ideal
title Every Banach ideal of polynomials is compatible with an operator ideal
spellingShingle Every Banach ideal of polynomials is compatible with an operator ideal
Carando, Daniel Germán
Polynomial Ideals
Operator Ideals
title_short Every Banach ideal of polynomials is compatible with an operator ideal
title_full Every Banach ideal of polynomials is compatible with an operator ideal
title_fullStr Every Banach ideal of polynomials is compatible with an operator ideal
title_full_unstemmed Every Banach ideal of polynomials is compatible with an operator ideal
title_sort Every Banach ideal of polynomials is compatible with an operator ideal
dc.creator.none.fl_str_mv Carando, Daniel Germán
Dimant, Veronica Isabel
Muro, Luis Santiago Miguel
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Dimant, Veronica Isabel
Muro, Luis Santiago Miguel
author_role author
author2 Dimant, Veronica Isabel
Muro, Luis Santiago Miguel
author2_role author
author
dc.subject.none.fl_str_mv Polynomial Ideals
Operator Ideals
topic Polynomial Ideals
Operator Ideals
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19936
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-14
0026-9255
1436-5081
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19936
identifier_str_mv Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-14
0026-9255
1436-5081
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-010-0255-3
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00605-010-0255-3
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1009.1064
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Wien
publisher.none.fl_str_mv Springer Wien
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269981895557120
score 13.13397