Every Banach ideal of polynomials is compatible with an operator ideal
- Autores
- Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Polynomial Ideals
Operator Ideals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19936
Ver los metadatos del registro completo
id |
CONICETDig_950db5057ad5d236087f2da47da98d6c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19936 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Every Banach ideal of polynomials is compatible with an operator idealCarando, Daniel GermánDimant, Veronica IsabelMuro, Luis Santiago MiguelPolynomial IdealsOperator Idealshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer Wien2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19936Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-140026-92551436-5081CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-010-0255-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00605-010-0255-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1009.1064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:56Zoai:ri.conicet.gov.ar:11336/19936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:56.83CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Every Banach ideal of polynomials is compatible with an operator ideal |
title |
Every Banach ideal of polynomials is compatible with an operator ideal |
spellingShingle |
Every Banach ideal of polynomials is compatible with an operator ideal Carando, Daniel Germán Polynomial Ideals Operator Ideals |
title_short |
Every Banach ideal of polynomials is compatible with an operator ideal |
title_full |
Every Banach ideal of polynomials is compatible with an operator ideal |
title_fullStr |
Every Banach ideal of polynomials is compatible with an operator ideal |
title_full_unstemmed |
Every Banach ideal of polynomials is compatible with an operator ideal |
title_sort |
Every Banach ideal of polynomials is compatible with an operator ideal |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Polynomial Ideals Operator Ideals |
topic |
Polynomial Ideals Operator Ideals |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials. Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19936 Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-14 0026-9255 1436-5081 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19936 |
identifier_str_mv |
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-14 0026-9255 1436-5081 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-010-0255-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00605-010-0255-3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1009.1064 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Wien |
publisher.none.fl_str_mv |
Springer Wien |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269981895557120 |
score |
13.13397 |