Every Banach ideal of polynomials is compatible with an operator ideal
- Autores
- Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Polynomial Ideals
Operator Ideals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19936
Ver los metadatos del registro completo
| id |
CONICETDig_950db5057ad5d236087f2da47da98d6c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19936 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Every Banach ideal of polynomials is compatible with an operator idealCarando, Daniel GermánDimant, Veronica IsabelMuro, Luis Santiago MiguelPolynomial IdealsOperator Idealshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer Wien2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19936Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-140026-92551436-5081CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-010-0255-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00605-010-0255-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1009.1064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:29:11Zoai:ri.conicet.gov.ar:11336/19936instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:29:12.169CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Every Banach ideal of polynomials is compatible with an operator ideal |
| title |
Every Banach ideal of polynomials is compatible with an operator ideal |
| spellingShingle |
Every Banach ideal of polynomials is compatible with an operator ideal Carando, Daniel Germán Polynomial Ideals Operator Ideals |
| title_short |
Every Banach ideal of polynomials is compatible with an operator ideal |
| title_full |
Every Banach ideal of polynomials is compatible with an operator ideal |
| title_fullStr |
Every Banach ideal of polynomials is compatible with an operator ideal |
| title_full_unstemmed |
Every Banach ideal of polynomials is compatible with an operator ideal |
| title_sort |
Every Banach ideal of polynomials is compatible with an operator ideal |
| dc.creator.none.fl_str_mv |
Carando, Daniel Germán Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
| author |
Carando, Daniel Germán |
| author_facet |
Carando, Daniel Germán Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
| author_role |
author |
| author2 |
Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Polynomial Ideals Operator Ideals |
| topic |
Polynomial Ideals Operator Ideals |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials. Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
We show that for each Banach ideal of homogeneous polynomials, there exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of ideals of k-homogeneous polynomials. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19936 Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-14 0026-9255 1436-5081 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/19936 |
| identifier_str_mv |
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Every Banach ideal of polynomials is compatible with an operator ideal; Springer Wien; Monatshefete Fur Mathematik; 165; 1; 1-2012; 1-14 0026-9255 1436-5081 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00605-010-0255-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00605-010-0255-3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1009.1064 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Wien |
| publisher.none.fl_str_mv |
Springer Wien |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846083431674413056 |
| score |
13.22299 |