Holomorphic functions and polynomial ideals on Banach spaces
- Autores
- Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andres. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Polynomial Ideals
Holomorphic Functions
Riemann Domains Over Banach Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17535
Ver los metadatos del registro completo
id |
CONICETDig_7f00c7fdaa52a050f5c5ae3c7a13db50 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17535 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Holomorphic functions and polynomial ideals on Banach spacesCarando, Daniel GermánDimant, Veronica IsabelMuro, Luis Santiago MiguelPolynomial IdealsHolomorphic FunctionsRiemann Domains Over Banach Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dimant, Veronica Isabel. Universidad de San Andres. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17535Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Holomorphic functions and polynomial ideals on Banach spaces; Springer; Collectanea Mathematica; 73; 1; 1-2010; 71-910010-07572038-4815enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13348-010-0025-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13348-010-0025-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:17Zoai:ri.conicet.gov.ar:11336/17535instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:17.549CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Holomorphic functions and polynomial ideals on Banach spaces |
title |
Holomorphic functions and polynomial ideals on Banach spaces |
spellingShingle |
Holomorphic functions and polynomial ideals on Banach spaces Carando, Daniel Germán Polynomial Ideals Holomorphic Functions Riemann Domains Over Banach Spaces |
title_short |
Holomorphic functions and polynomial ideals on Banach spaces |
title_full |
Holomorphic functions and polynomial ideals on Banach spaces |
title_fullStr |
Holomorphic functions and polynomial ideals on Banach spaces |
title_full_unstemmed |
Holomorphic functions and polynomial ideals on Banach spaces |
title_sort |
Holomorphic functions and polynomial ideals on Banach spaces |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Dimant, Veronica Isabel Muro, Luis Santiago Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Polynomial Ideals Holomorphic Functions Riemann Domains Over Banach Spaces |
topic |
Polynomial Ideals Holomorphic Functions Riemann Domains Over Banach Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras. Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dimant, Veronica Isabel. Universidad de San Andres. Departamento de Matemáticas y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given A a multiplicative sequence of polynomial ideals, we consider the associated algebra of holomorphic functions of bounded type, HbA(E). We prove that, under very natural conditions satisfied by many usual classes of polynomials, the spectrum MbA(E) of this algebra “behaves” like the classical case of Mb(E) (the spectrum of Hb(E), the algebra of bounded type holomorphic functions). More precisely, we prove that MbA(E) can be endowed with a structure of Riemann domain over E and that the extension of each f ∈ HbA(E) to the spectrum is an A-holomorphic function of bounded type in each connected component. We also prove a Banach-Stone type theorem for these algebras. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17535 Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Holomorphic functions and polynomial ideals on Banach spaces; Springer; Collectanea Mathematica; 73; 1; 1-2010; 71-91 0010-0757 2038-4815 |
url |
http://hdl.handle.net/11336/17535 |
identifier_str_mv |
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Holomorphic functions and polynomial ideals on Banach spaces; Springer; Collectanea Mathematica; 73; 1; 1-2010; 71-91 0010-0757 2038-4815 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13348-010-0025-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs13348-010-0025-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268848651239424 |
score |
13.13397 |