The Banach ideal of A-compact operators and related approximation properties
- Autores
- Lassalle, Silvia Beatriz; Turco, Pablo Alejandro
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Turco, Pablo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Operator ideals
Compact sets
Approximation properties - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14862
Ver los metadatos del registro completo
id |
CONICETDig_88ea67f174f8811058c13253b07cf5b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14862 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Banach ideal of A-compact operators and related approximation propertiesLassalle, Silvia BeatrizTurco, Pablo AlejandroOperator idealsCompact setsApproximation propertieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Turco, Pablo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier2013-07-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14862Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The Banach ideal of A-compact operators and related approximation properties; Elsevier; Journal Of Functional Analysis; 265; 10; 22-7-2013; 2452-24640022-1236enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123613002589info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2013.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:43Zoai:ri.conicet.gov.ar:11336/14862instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:44.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Banach ideal of A-compact operators and related approximation properties |
title |
The Banach ideal of A-compact operators and related approximation properties |
spellingShingle |
The Banach ideal of A-compact operators and related approximation properties Lassalle, Silvia Beatriz Operator ideals Compact sets Approximation properties |
title_short |
The Banach ideal of A-compact operators and related approximation properties |
title_full |
The Banach ideal of A-compact operators and related approximation properties |
title_fullStr |
The Banach ideal of A-compact operators and related approximation properties |
title_full_unstemmed |
The Banach ideal of A-compact operators and related approximation properties |
title_sort |
The Banach ideal of A-compact operators and related approximation properties |
dc.creator.none.fl_str_mv |
Lassalle, Silvia Beatriz Turco, Pablo Alejandro |
author |
Lassalle, Silvia Beatriz |
author_facet |
Lassalle, Silvia Beatriz Turco, Pablo Alejandro |
author_role |
author |
author2 |
Turco, Pablo Alejandro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Operator ideals Compact sets Approximation properties |
topic |
Operator ideals Compact sets Approximation properties |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness. Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Turco, Pablo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14862 Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The Banach ideal of A-compact operators and related approximation properties; Elsevier; Journal Of Functional Analysis; 265; 10; 22-7-2013; 2452-2464 0022-1236 |
url |
http://hdl.handle.net/11336/14862 |
identifier_str_mv |
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The Banach ideal of A-compact operators and related approximation properties; Elsevier; Journal Of Functional Analysis; 265; 10; 22-7-2013; 2452-2464 0022-1236 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123613002589 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2013.07.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269050017677312 |
score |
13.13397 |