The Banach ideal of A-compact operators and related approximation properties

Autores
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Turco, Pablo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Operator ideals
Compact sets
Approximation properties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14862

id CONICETDig_88ea67f174f8811058c13253b07cf5b9
oai_identifier_str oai:ri.conicet.gov.ar:11336/14862
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Banach ideal of A-compact operators and related approximation propertiesLassalle, Silvia BeatrizTurco, Pablo AlejandroOperator idealsCompact setsApproximation propertieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Turco, Pablo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier2013-07-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14862Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The Banach ideal of A-compact operators and related approximation properties; Elsevier; Journal Of Functional Analysis; 265; 10; 22-7-2013; 2452-24640022-1236enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123613002589info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2013.07.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:43Zoai:ri.conicet.gov.ar:11336/14862instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:44.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Banach ideal of A-compact operators and related approximation properties
title The Banach ideal of A-compact operators and related approximation properties
spellingShingle The Banach ideal of A-compact operators and related approximation properties
Lassalle, Silvia Beatriz
Operator ideals
Compact sets
Approximation properties
title_short The Banach ideal of A-compact operators and related approximation properties
title_full The Banach ideal of A-compact operators and related approximation properties
title_fullStr The Banach ideal of A-compact operators and related approximation properties
title_full_unstemmed The Banach ideal of A-compact operators and related approximation properties
title_sort The Banach ideal of A-compact operators and related approximation properties
dc.creator.none.fl_str_mv Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author Lassalle, Silvia Beatriz
author_facet Lassalle, Silvia Beatriz
Turco, Pablo Alejandro
author_role author
author2 Turco, Pablo Alejandro
author2_role author
dc.subject.none.fl_str_mv Operator ideals
Compact sets
Approximation properties
topic Operator ideals
Compact sets
Approximation properties
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.
Fil: Lassalle, Silvia Beatriz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Turco, Pablo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.
publishDate 2013
dc.date.none.fl_str_mv 2013-07-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14862
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The Banach ideal of A-compact operators and related approximation properties; Elsevier; Journal Of Functional Analysis; 265; 10; 22-7-2013; 2452-2464
0022-1236
url http://hdl.handle.net/11336/14862
identifier_str_mv Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; The Banach ideal of A-compact operators and related approximation properties; Elsevier; Journal Of Functional Analysis; 265; 10; 22-7-2013; 2452-2464
0022-1236
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123613002589
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2013.07.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269050017677312
score 13.13397