Lagrange approximation in Banach spaces
- Autores
- Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.
Fil: Nilsson, Lisa. If P&C Insurance; Suecia
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
BANACH SPACE
KERGIN APPROXIMATION
KERGIN INTERPOLATION
LAGRANGE APPROXIMATION
LAGRANGE INTERPOLATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38360
Ver los metadatos del registro completo
id |
CONICETDig_94b598b358e459e3a63537d9aebd9a6b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38360 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lagrange approximation in Banach spacesNilsson, LisaPinasco, DamianZalduendo, Ignacio MartinBANACH SPACEKERGIN APPROXIMATIONKERGIN INTERPOLATIONLAGRANGE APPROXIMATIONLAGRANGE INTERPOLATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.Fil: Nilsson, Lisa. If P&C Insurance; SueciaFil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaSpringer Heidelberg2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38360Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin; Lagrange approximation in Banach spaces; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 4-2015; 281-2880011-4642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-015-0174-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10587-015-0174-5info:eu-repo/semantics/altIdentifier/url/http://cmj.math.cas.cz/cmj65-1/17.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:06Zoai:ri.conicet.gov.ar:11336/38360instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:06.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lagrange approximation in Banach spaces |
title |
Lagrange approximation in Banach spaces |
spellingShingle |
Lagrange approximation in Banach spaces Nilsson, Lisa BANACH SPACE KERGIN APPROXIMATION KERGIN INTERPOLATION LAGRANGE APPROXIMATION LAGRANGE INTERPOLATION |
title_short |
Lagrange approximation in Banach spaces |
title_full |
Lagrange approximation in Banach spaces |
title_fullStr |
Lagrange approximation in Banach spaces |
title_full_unstemmed |
Lagrange approximation in Banach spaces |
title_sort |
Lagrange approximation in Banach spaces |
dc.creator.none.fl_str_mv |
Nilsson, Lisa Pinasco, Damian Zalduendo, Ignacio Martin |
author |
Nilsson, Lisa |
author_facet |
Nilsson, Lisa Pinasco, Damian Zalduendo, Ignacio Martin |
author_role |
author |
author2 |
Pinasco, Damian Zalduendo, Ignacio Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BANACH SPACE KERGIN APPROXIMATION KERGIN INTERPOLATION LAGRANGE APPROXIMATION LAGRANGE INTERPOLATION |
topic |
BANACH SPACE KERGIN APPROXIMATION KERGIN INTERPOLATION LAGRANGE APPROXIMATION LAGRANGE INTERPOLATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence. Fil: Nilsson, Lisa. If P&C Insurance; Suecia Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38360 Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin; Lagrange approximation in Banach spaces; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 4-2015; 281-288 0011-4642 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38360 |
identifier_str_mv |
Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin; Lagrange approximation in Banach spaces; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 4-2015; 281-288 0011-4642 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-015-0174-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10587-015-0174-5 info:eu-repo/semantics/altIdentifier/url/http://cmj.math.cas.cz/cmj65-1/17.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268953655640064 |
score |
13.13397 |