Lagrange approximation in Banach spaces

Autores
Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.
Fil: Nilsson, Lisa. If P&C Insurance; Suecia
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
Materia
BANACH SPACE
KERGIN APPROXIMATION
KERGIN INTERPOLATION
LAGRANGE APPROXIMATION
LAGRANGE INTERPOLATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38360

id CONICETDig_94b598b358e459e3a63537d9aebd9a6b
oai_identifier_str oai:ri.conicet.gov.ar:11336/38360
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lagrange approximation in Banach spacesNilsson, LisaPinasco, DamianZalduendo, Ignacio MartinBANACH SPACEKERGIN APPROXIMATIONKERGIN INTERPOLATIONLAGRANGE APPROXIMATIONLAGRANGE INTERPOLATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.Fil: Nilsson, Lisa. If P&C Insurance; SueciaFil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaSpringer Heidelberg2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38360Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin; Lagrange approximation in Banach spaces; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 4-2015; 281-2880011-4642CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-015-0174-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10587-015-0174-5info:eu-repo/semantics/altIdentifier/url/http://cmj.math.cas.cz/cmj65-1/17.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:06Zoai:ri.conicet.gov.ar:11336/38360instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:06.716CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lagrange approximation in Banach spaces
title Lagrange approximation in Banach spaces
spellingShingle Lagrange approximation in Banach spaces
Nilsson, Lisa
BANACH SPACE
KERGIN APPROXIMATION
KERGIN INTERPOLATION
LAGRANGE APPROXIMATION
LAGRANGE INTERPOLATION
title_short Lagrange approximation in Banach spaces
title_full Lagrange approximation in Banach spaces
title_fullStr Lagrange approximation in Banach spaces
title_full_unstemmed Lagrange approximation in Banach spaces
title_sort Lagrange approximation in Banach spaces
dc.creator.none.fl_str_mv Nilsson, Lisa
Pinasco, Damian
Zalduendo, Ignacio Martin
author Nilsson, Lisa
author_facet Nilsson, Lisa
Pinasco, Damian
Zalduendo, Ignacio Martin
author_role author
author2 Pinasco, Damian
Zalduendo, Ignacio Martin
author2_role author
author
dc.subject.none.fl_str_mv BANACH SPACE
KERGIN APPROXIMATION
KERGIN INTERPOLATION
LAGRANGE APPROXIMATION
LAGRANGE INTERPOLATION
topic BANACH SPACE
KERGIN APPROXIMATION
KERGIN INTERPOLATION
LAGRANGE APPROXIMATION
LAGRANGE INTERPOLATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.
Fil: Nilsson, Lisa. If P&C Insurance; Suecia
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zalduendo, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
description Starting from Lagrange interpolation of the exponential function ez in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space E. Given such a representable entire funtion f: E → ℂ, in order to study the approximation problem and the uniform convergence of these polynomials to f on bounded sets of E, we present a sufficient growth condition on the interpolating sequence.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38360
Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin; Lagrange approximation in Banach spaces; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 4-2015; 281-288
0011-4642
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38360
identifier_str_mv Nilsson, Lisa; Pinasco, Damian; Zalduendo, Ignacio Martin; Lagrange approximation in Banach spaces; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 4-2015; 281-288
0011-4642
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-015-0174-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10587-015-0174-5
info:eu-repo/semantics/altIdentifier/url/http://cmj.math.cas.cz/cmj65-1/17.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268953655640064
score 13.13397