Covergence and divergence of the iterated biclique graph

Autores
Groshaus, Marina Esther; Montero, Leandro Pedro
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montero, Leandro Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Bicliques
Biclique Graphs
Clique Graphs
Divergent Graphs
Iterated Graph Operators
Graph Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15646

id CONICETDig_deae6689622600d20b82ca08e12c19c4
oai_identifier_str oai:ri.conicet.gov.ar:11336/15646
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Covergence and divergence of the iterated biclique graphGroshaus, Marina EstherMontero, Leandro PedroBicliquesBiclique GraphsClique GraphsDivergent GraphsIterated Graph OperatorsGraph Dynamicshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montero, Leandro Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15646Groshaus, Marina Esther; Montero, Leandro Pedro; Covergence and divergence of the iterated biclique graph; Wiley; Journal Of Graph Theory; 73; 2; 6-2013; 181-1900364-9024enginfo:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.21666info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/jgt.21666/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:59Zoai:ri.conicet.gov.ar:11336/15646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:59.468CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Covergence and divergence of the iterated biclique graph
title Covergence and divergence of the iterated biclique graph
spellingShingle Covergence and divergence of the iterated biclique graph
Groshaus, Marina Esther
Bicliques
Biclique Graphs
Clique Graphs
Divergent Graphs
Iterated Graph Operators
Graph Dynamics
title_short Covergence and divergence of the iterated biclique graph
title_full Covergence and divergence of the iterated biclique graph
title_fullStr Covergence and divergence of the iterated biclique graph
title_full_unstemmed Covergence and divergence of the iterated biclique graph
title_sort Covergence and divergence of the iterated biclique graph
dc.creator.none.fl_str_mv Groshaus, Marina Esther
Montero, Leandro Pedro
author Groshaus, Marina Esther
author_facet Groshaus, Marina Esther
Montero, Leandro Pedro
author_role author
author2 Montero, Leandro Pedro
author2_role author
dc.subject.none.fl_str_mv Bicliques
Biclique Graphs
Clique Graphs
Divergent Graphs
Iterated Graph Operators
Graph Dynamics
topic Bicliques
Biclique Graphs
Clique Graphs
Divergent Graphs
Iterated Graph Operators
Graph Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montero, Leandro Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.
publishDate 2013
dc.date.none.fl_str_mv 2013-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15646
Groshaus, Marina Esther; Montero, Leandro Pedro; Covergence and divergence of the iterated biclique graph; Wiley; Journal Of Graph Theory; 73; 2; 6-2013; 181-190
0364-9024
url http://hdl.handle.net/11336/15646
identifier_str_mv Groshaus, Marina Esther; Montero, Leandro Pedro; Covergence and divergence of the iterated biclique graph; Wiley; Journal Of Graph Theory; 73; 2; 6-2013; 181-190
0364-9024
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.21666
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/jgt.21666/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979918720270336
score 12.48226