Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration

Autores
Eguía, Martiniano; Soulignac, Francisco Juan
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.
Fil: Eguía, Martiniano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
HEREDITARY BICLIQUE-HELLY GRAPHS
MAXIMAL BICLIQUES
TRIANGLE-FREE GRAPHS
DOMINATION PROBLEMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15927

id CONICETDig_25f3f32b1d8930b2fb2e5edd67db919b
oai_identifier_str oai:ri.conicet.gov.ar:11336/15927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hereditary biclique-Helly graphs: recognition and maximal biclique enumerationEguía, MartinianoSoulignac, Francisco JuanHEREDITARY BICLIQUE-HELLY GRAPHSMAXIMAL BICLIQUESTRIANGLE-FREE GRAPHSDOMINATION PROBLEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.Fil: Eguía, Martiniano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDiscrete Mathematics And Theoretical Computer Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15927Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-741365-8050enginfo:eu-repo/semantics/altIdentifier/url/https://dmtcs.episciences.org/626info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:39Zoai:ri.conicet.gov.ar:11336/15927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:39.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
title Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
spellingShingle Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
Eguía, Martiniano
HEREDITARY BICLIQUE-HELLY GRAPHS
MAXIMAL BICLIQUES
TRIANGLE-FREE GRAPHS
DOMINATION PROBLEMS
title_short Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
title_full Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
title_fullStr Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
title_full_unstemmed Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
title_sort Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
dc.creator.none.fl_str_mv Eguía, Martiniano
Soulignac, Francisco Juan
author Eguía, Martiniano
author_facet Eguía, Martiniano
Soulignac, Francisco Juan
author_role author
author2 Soulignac, Francisco Juan
author2_role author
dc.subject.none.fl_str_mv HEREDITARY BICLIQUE-HELLY GRAPHS
MAXIMAL BICLIQUES
TRIANGLE-FREE GRAPHS
DOMINATION PROBLEMS
topic HEREDITARY BICLIQUE-HELLY GRAPHS
MAXIMAL BICLIQUES
TRIANGLE-FREE GRAPHS
DOMINATION PROBLEMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.
Fil: Eguía, Martiniano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15927
Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-74
1365-8050
url http://hdl.handle.net/11336/15927
identifier_str_mv Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-74
1365-8050
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://dmtcs.episciences.org/626
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Discrete Mathematics And Theoretical Computer Science
publisher.none.fl_str_mv Discrete Mathematics And Theoretical Computer Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614447786622976
score 13.070432