Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
- Autores
- Eguía, Martiniano; Soulignac, Francisco Juan
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.
Fil: Eguía, Martiniano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
HEREDITARY BICLIQUE-HELLY GRAPHS
MAXIMAL BICLIQUES
TRIANGLE-FREE GRAPHS
DOMINATION PROBLEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15927
Ver los metadatos del registro completo
id |
CONICETDig_25f3f32b1d8930b2fb2e5edd67db919b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15927 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumerationEguía, MartinianoSoulignac, Francisco JuanHEREDITARY BICLIQUE-HELLY GRAPHSMAXIMAL BICLIQUESTRIANGLE-FREE GRAPHSDOMINATION PROBLEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.Fil: Eguía, Martiniano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDiscrete Mathematics And Theoretical Computer Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15927Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-741365-8050enginfo:eu-repo/semantics/altIdentifier/url/https://dmtcs.episciences.org/626info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:39Zoai:ri.conicet.gov.ar:11336/15927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:39.73CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
title |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
spellingShingle |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration Eguía, Martiniano HEREDITARY BICLIQUE-HELLY GRAPHS MAXIMAL BICLIQUES TRIANGLE-FREE GRAPHS DOMINATION PROBLEMS |
title_short |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
title_full |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
title_fullStr |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
title_full_unstemmed |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
title_sort |
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration |
dc.creator.none.fl_str_mv |
Eguía, Martiniano Soulignac, Francisco Juan |
author |
Eguía, Martiniano |
author_facet |
Eguía, Martiniano Soulignac, Francisco Juan |
author_role |
author |
author2 |
Soulignac, Francisco Juan |
author2_role |
author |
dc.subject.none.fl_str_mv |
HEREDITARY BICLIQUE-HELLY GRAPHS MAXIMAL BICLIQUES TRIANGLE-FREE GRAPHS DOMINATION PROBLEMS |
topic |
HEREDITARY BICLIQUE-HELLY GRAPHS MAXIMAL BICLIQUES TRIANGLE-FREE GRAPHS DOMINATION PROBLEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space. Fil: Eguía, Martiniano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15927 Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-74 1365-8050 |
url |
http://hdl.handle.net/11336/15927 |
identifier_str_mv |
Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-74 1365-8050 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://dmtcs.episciences.org/626 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Discrete Mathematics And Theoretical Computer Science |
publisher.none.fl_str_mv |
Discrete Mathematics And Theoretical Computer Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614447786622976 |
score |
13.070432 |