Biclique graphs and biclique matrices

Autores
Groshaus, Marina Esther; Szwarcfiter, Jayme L.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A biclique of a graph G is a maximal induced complete bipar tite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1, -1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, -1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in similar terms as those employed in Gilmore's characterization of clique matrices. On the other hand, the biclique graph of a graph is the intersection graph of the bicliques of G. Using the concept of biclique matrices, we describe a Krausz-type char acterization of biclique graphs. Finally, we show that every induced P3 of a biclique graph must be included in a diamond or in a 3-fan and we also characterize biclique graphs of bipartite graphs.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
Materia
Biclique Graphs
Bicliques
Bipartite Matrices
Clique Graphs
Cliques
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68007

id CONICETDig_8a9e93a995f545ddf848a020fd248f54
oai_identifier_str oai:ri.conicet.gov.ar:11336/68007
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biclique graphs and biclique matricesGroshaus, Marina EstherSzwarcfiter, Jayme L.Biclique GraphsBicliquesBipartite MatricesClique GraphsCliqueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A biclique of a graph G is a maximal induced complete bipar tite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1, -1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, -1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in similar terms as those employed in Gilmore's characterization of clique matrices. On the other hand, the biclique graph of a graph is the intersection graph of the bicliques of G. Using the concept of biclique matrices, we describe a Krausz-type char acterization of biclique graphs. Finally, we show that every induced P3 of a biclique graph must be included in a diamond or in a 3-fan and we also characterize biclique graphs of bipartite graphs.Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; BrasilJohn Wiley & Sons Inc2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68007Groshaus, Marina Esther; Szwarcfiter, Jayme L.; Biclique graphs and biclique matrices; John Wiley & Sons Inc; Journal of Graph Theory; 63; 1; 1-2010; 1-160364-9024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.20442info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20442info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:27Zoai:ri.conicet.gov.ar:11336/68007instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:27.782CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biclique graphs and biclique matrices
title Biclique graphs and biclique matrices
spellingShingle Biclique graphs and biclique matrices
Groshaus, Marina Esther
Biclique Graphs
Bicliques
Bipartite Matrices
Clique Graphs
Cliques
title_short Biclique graphs and biclique matrices
title_full Biclique graphs and biclique matrices
title_fullStr Biclique graphs and biclique matrices
title_full_unstemmed Biclique graphs and biclique matrices
title_sort Biclique graphs and biclique matrices
dc.creator.none.fl_str_mv Groshaus, Marina Esther
Szwarcfiter, Jayme L.
author Groshaus, Marina Esther
author_facet Groshaus, Marina Esther
Szwarcfiter, Jayme L.
author_role author
author2 Szwarcfiter, Jayme L.
author2_role author
dc.subject.none.fl_str_mv Biclique Graphs
Bicliques
Bipartite Matrices
Clique Graphs
Cliques
topic Biclique Graphs
Bicliques
Bipartite Matrices
Clique Graphs
Cliques
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A biclique of a graph G is a maximal induced complete bipar tite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1, -1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, -1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in similar terms as those employed in Gilmore's characterization of clique matrices. On the other hand, the biclique graph of a graph is the intersection graph of the bicliques of G. Using the concept of biclique matrices, we describe a Krausz-type char acterization of biclique graphs. Finally, we show that every induced P3 of a biclique graph must be included in a diamond or in a 3-fan and we also characterize biclique graphs of bipartite graphs.
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
description A biclique of a graph G is a maximal induced complete bipar tite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1, -1} matrix having one row for each biclique and one column for each vertex of G, and such that a pair of 1, -1 entries in a same row corresponds exactly to adjacent vertices in the corresponding biclique. We describe a characterization of biclique matrices, in similar terms as those employed in Gilmore's characterization of clique matrices. On the other hand, the biclique graph of a graph is the intersection graph of the bicliques of G. Using the concept of biclique matrices, we describe a Krausz-type char acterization of biclique graphs. Finally, we show that every induced P3 of a biclique graph must be included in a diamond or in a 3-fan and we also characterize biclique graphs of bipartite graphs.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68007
Groshaus, Marina Esther; Szwarcfiter, Jayme L.; Biclique graphs and biclique matrices; John Wiley & Sons Inc; Journal of Graph Theory; 63; 1; 1-2010; 1-16
0364-9024
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68007
identifier_str_mv Groshaus, Marina Esther; Szwarcfiter, Jayme L.; Biclique graphs and biclique matrices; John Wiley & Sons Inc; Journal of Graph Theory; 63; 1; 1-2010; 1-16
0364-9024
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.20442
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20442
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269695633260544
score 13.13397