On edge-sets of bicliques in graphs
- Autores
- Groshaus, M.; Hell, P.; Stacho, J.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction, the triangular prism. Using this result, we characterize graphs whose edge-biclique hypergraph is Helly and provide a polynomial time recognition algorithm. We further study a hereditary version of this property and show that it also admits polynomial time recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs. We conclude by describing some interesting properties of the 2-section graph of the edge-biclique hypergraph. © 2011 Elsevier B.V. All rights reserved.
Fil:Groshaus, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Discrete Appl Math 2012;160(18):2698-2708
- Materia
-
2-section
Biclique
Clique graph
Conformal
Helly
Hypergraph
Intersection graph
2-section
Biclique
Clique graphs
Conformal
Helly
Hypergraph
Intersection graph
Combinatorial mathematics
Mathematical techniques
Polynomial approximation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0166218X_v160_n18_p2698_Groshaus
Ver los metadatos del registro completo
| id |
BDUBAFCEN_1a6102bd4c19614a3739382c0141c4f2 |
|---|---|
| oai_identifier_str |
paperaa:paper_0166218X_v160_n18_p2698_Groshaus |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
On edge-sets of bicliques in graphsGroshaus, M.Hell, P.Stacho, J.2-sectionBicliqueClique graphConformalHellyHypergraphIntersection graph2-sectionBicliqueClique graphsConformalHellyHypergraphIntersection graphCombinatorial mathematicsMathematical techniquesPolynomial approximationA biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction, the triangular prism. Using this result, we characterize graphs whose edge-biclique hypergraph is Helly and provide a polynomial time recognition algorithm. We further study a hereditary version of this property and show that it also admits polynomial time recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs. We conclude by describing some interesting properties of the 2-section graph of the edge-biclique hypergraph. © 2011 Elsevier B.V. All rights reserved.Fil:Groshaus, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2698_GroshausDiscrete Appl Math 2012;160(18):2698-2708reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:10Zpaperaa:paper_0166218X_v160_n18_p2698_GroshausInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:12.057Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
On edge-sets of bicliques in graphs |
| title |
On edge-sets of bicliques in graphs |
| spellingShingle |
On edge-sets of bicliques in graphs Groshaus, M. 2-section Biclique Clique graph Conformal Helly Hypergraph Intersection graph 2-section Biclique Clique graphs Conformal Helly Hypergraph Intersection graph Combinatorial mathematics Mathematical techniques Polynomial approximation |
| title_short |
On edge-sets of bicliques in graphs |
| title_full |
On edge-sets of bicliques in graphs |
| title_fullStr |
On edge-sets of bicliques in graphs |
| title_full_unstemmed |
On edge-sets of bicliques in graphs |
| title_sort |
On edge-sets of bicliques in graphs |
| dc.creator.none.fl_str_mv |
Groshaus, M. Hell, P. Stacho, J. |
| author |
Groshaus, M. |
| author_facet |
Groshaus, M. Hell, P. Stacho, J. |
| author_role |
author |
| author2 |
Hell, P. Stacho, J. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
2-section Biclique Clique graph Conformal Helly Hypergraph Intersection graph 2-section Biclique Clique graphs Conformal Helly Hypergraph Intersection graph Combinatorial mathematics Mathematical techniques Polynomial approximation |
| topic |
2-section Biclique Clique graph Conformal Helly Hypergraph Intersection graph 2-section Biclique Clique graphs Conformal Helly Hypergraph Intersection graph Combinatorial mathematics Mathematical techniques Polynomial approximation |
| dc.description.none.fl_txt_mv |
A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction, the triangular prism. Using this result, we characterize graphs whose edge-biclique hypergraph is Helly and provide a polynomial time recognition algorithm. We further study a hereditary version of this property and show that it also admits polynomial time recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs. We conclude by describing some interesting properties of the 2-section graph of the edge-biclique hypergraph. © 2011 Elsevier B.V. All rights reserved. Fil:Groshaus, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edge-biclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) by means of a single forbidden induced obstruction, the triangular prism. Using this result, we characterize graphs whose edge-biclique hypergraph is Helly and provide a polynomial time recognition algorithm. We further study a hereditary version of this property and show that it also admits polynomial time recognition, and, in fact, is characterized by a finite set of forbidden induced subgraphs. We conclude by describing some interesting properties of the 2-section graph of the edge-biclique hypergraph. © 2011 Elsevier B.V. All rights reserved. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2698_Groshaus |
| url |
http://hdl.handle.net/20.500.12110/paper_0166218X_v160_n18_p2698_Groshaus |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Discrete Appl Math 2012;160(18):2698-2708 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846142847296733184 |
| score |
12.712165 |