Hypercyclic behavior of some non-convolution operators on H(CN)
- Autores
- Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Composition Operators
Differentiation Operators
Frequently Hypercyclic Operators
Non-Convolution Operators
Strongly Mixing Operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/53339
Ver los metadatos del registro completo
id |
CONICETDig_d969c77cc313325b47ed8117b547e889 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/53339 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hypercyclic behavior of some non-convolution operators on H(CN)Muro, Luis Santiago MiguelPinasco, DamianSavransky, MartinComposition OperatorsDifferentiation OperatorsFrequently Hypercyclic OperatorsNon-Convolution OperatorsStrongly Mixing Operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTheta Foundation2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53339Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Hypercyclic behavior of some non-convolution operators on H(CN); Theta Foundation; Journal Of Operator Theory; 77; 1; 1-2017; 39-590379-40241841-7744CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2017-077-001/2017-077-001-003.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2015oct08.2127info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:44:34Zoai:ri.conicet.gov.ar:11336/53339instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:44:35.264CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hypercyclic behavior of some non-convolution operators on H(CN) |
title |
Hypercyclic behavior of some non-convolution operators on H(CN) |
spellingShingle |
Hypercyclic behavior of some non-convolution operators on H(CN) Muro, Luis Santiago Miguel Composition Operators Differentiation Operators Frequently Hypercyclic Operators Non-Convolution Operators Strongly Mixing Operators |
title_short |
Hypercyclic behavior of some non-convolution operators on H(CN) |
title_full |
Hypercyclic behavior of some non-convolution operators on H(CN) |
title_fullStr |
Hypercyclic behavior of some non-convolution operators on H(CN) |
title_full_unstemmed |
Hypercyclic behavior of some non-convolution operators on H(CN) |
title_sort |
Hypercyclic behavior of some non-convolution operators on H(CN) |
dc.creator.none.fl_str_mv |
Muro, Luis Santiago Miguel Pinasco, Damian Savransky, Martin |
author |
Muro, Luis Santiago Miguel |
author_facet |
Muro, Luis Santiago Miguel Pinasco, Damian Savransky, Martin |
author_role |
author |
author2 |
Pinasco, Damian Savransky, Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Composition Operators Differentiation Operators Frequently Hypercyclic Operators Non-Convolution Operators Strongly Mixing Operators |
topic |
Composition Operators Differentiation Operators Frequently Hypercyclic Operators Non-Convolution Operators Strongly Mixing Operators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved. Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/53339 Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Hypercyclic behavior of some non-convolution operators on H(CN); Theta Foundation; Journal Of Operator Theory; 77; 1; 1-2017; 39-59 0379-4024 1841-7744 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/53339 |
identifier_str_mv |
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Hypercyclic behavior of some non-convolution operators on H(CN); Theta Foundation; Journal Of Operator Theory; 77; 1; 1-2017; 39-59 0379-4024 1841-7744 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2017-077-001/2017-077-001-003.html info:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2015oct08.2127 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Theta Foundation |
publisher.none.fl_str_mv |
Theta Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082956480741376 |
score |
13.216834 |