Hypercyclic behavior of some non-convolution operators on H(CN)

Autores
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Composition Operators
Differentiation Operators
Frequently Hypercyclic Operators
Non-Convolution Operators
Strongly Mixing Operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53339

id CONICETDig_d969c77cc313325b47ed8117b547e889
oai_identifier_str oai:ri.conicet.gov.ar:11336/53339
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hypercyclic behavior of some non-convolution operators on H(CN)Muro, Luis Santiago MiguelPinasco, DamianSavransky, MartinComposition OperatorsDifferentiation OperatorsFrequently Hypercyclic OperatorsNon-Convolution OperatorsStrongly Mixing Operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTheta Foundation2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53339Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Hypercyclic behavior of some non-convolution operators on H(CN); Theta Foundation; Journal Of Operator Theory; 77; 1; 1-2017; 39-590379-40241841-7744CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2017-077-001/2017-077-001-003.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2015oct08.2127info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:44:34Zoai:ri.conicet.gov.ar:11336/53339instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:44:35.264CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hypercyclic behavior of some non-convolution operators on H(CN)
title Hypercyclic behavior of some non-convolution operators on H(CN)
spellingShingle Hypercyclic behavior of some non-convolution operators on H(CN)
Muro, Luis Santiago Miguel
Composition Operators
Differentiation Operators
Frequently Hypercyclic Operators
Non-Convolution Operators
Strongly Mixing Operators
title_short Hypercyclic behavior of some non-convolution operators on H(CN)
title_full Hypercyclic behavior of some non-convolution operators on H(CN)
title_fullStr Hypercyclic behavior of some non-convolution operators on H(CN)
title_full_unstemmed Hypercyclic behavior of some non-convolution operators on H(CN)
title_sort Hypercyclic behavior of some non-convolution operators on H(CN)
dc.creator.none.fl_str_mv Muro, Luis Santiago Miguel
Pinasco, Damian
Savransky, Martin
author Muro, Luis Santiago Miguel
author_facet Muro, Luis Santiago Miguel
Pinasco, Damian
Savransky, Martin
author_role author
author2 Pinasco, Damian
Savransky, Martin
author2_role author
author
dc.subject.none.fl_str_mv Composition Operators
Differentiation Operators
Frequently Hypercyclic Operators
Non-Convolution Operators
Strongly Mixing Operators
topic Composition Operators
Differentiation Operators
Frequently Hypercyclic Operators
Non-Convolution Operators
Strongly Mixing Operators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study hypercyclicity properties of a family of non-convolution operators defined on the spaces of entire functions on CN. These operators are a composition of a differentiation operator and an affine composition operator, and are analogues of operators studied by Aron and Markose on H(C). The hypercyclic behavior is more involved than in the one dimensional case, and depends on several parameters involved.
publishDate 2017
dc.date.none.fl_str_mv 2017-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53339
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Hypercyclic behavior of some non-convolution operators on H(CN); Theta Foundation; Journal Of Operator Theory; 77; 1; 1-2017; 39-59
0379-4024
1841-7744
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53339
identifier_str_mv Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Hypercyclic behavior of some non-convolution operators on H(CN); Theta Foundation; Journal Of Operator Theory; 77; 1; 1-2017; 39-59
0379-4024
1841-7744
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2017-077-001/2017-077-001-003.html
info:eu-repo/semantics/altIdentifier/doi/10.7900/jot.2015oct08.2127
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Theta Foundation
publisher.none.fl_str_mv Theta Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082956480741376
score 13.216834