Hypercyclic homogeneous polynomials on H(C)
- Autores
- Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic.
Fil: Cardeccia, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
ENTIRE FUNCTIONS
FREQUENTLY HYPERCYCLIC OPERATORS
HOMOGENEOUS POLYNOMIALS
UNIVERSAL FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93951
Ver los metadatos del registro completo
id |
CONICETDig_2877df9624c7cd0af2e81063f7423f06 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93951 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hypercyclic homogeneous polynomials on H(C)Cardeccia, Rodrigo AlejandroMuro, Luis Santiago MiguelENTIRE FUNCTIONSFREQUENTLY HYPERCYCLIC OPERATORSHOMOGENEOUS POLYNOMIALSUNIVERSAL FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic.Fil: Cardeccia, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaAcademic Press Inc Elsevier Science2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93951Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Hypercyclic homogeneous polynomials on H(C); Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 226; 2-2018; 60-720021-9045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2017.09.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904517301193info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.04773info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:41Zoai:ri.conicet.gov.ar:11336/93951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:42.214CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hypercyclic homogeneous polynomials on H(C) |
title |
Hypercyclic homogeneous polynomials on H(C) |
spellingShingle |
Hypercyclic homogeneous polynomials on H(C) Cardeccia, Rodrigo Alejandro ENTIRE FUNCTIONS FREQUENTLY HYPERCYCLIC OPERATORS HOMOGENEOUS POLYNOMIALS UNIVERSAL FUNCTIONS |
title_short |
Hypercyclic homogeneous polynomials on H(C) |
title_full |
Hypercyclic homogeneous polynomials on H(C) |
title_fullStr |
Hypercyclic homogeneous polynomials on H(C) |
title_full_unstemmed |
Hypercyclic homogeneous polynomials on H(C) |
title_sort |
Hypercyclic homogeneous polynomials on H(C) |
dc.creator.none.fl_str_mv |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
author |
Cardeccia, Rodrigo Alejandro |
author_facet |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Muro, Luis Santiago Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
ENTIRE FUNCTIONS FREQUENTLY HYPERCYCLIC OPERATORS HOMOGENEOUS POLYNOMIALS UNIVERSAL FUNCTIONS |
topic |
ENTIRE FUNCTIONS FREQUENTLY HYPERCYCLIC OPERATORS HOMOGENEOUS POLYNOMIALS UNIVERSAL FUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic. Fil: Cardeccia, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
It is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93951 Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Hypercyclic homogeneous polynomials on H(C); Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 226; 2-2018; 60-72 0021-9045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93951 |
identifier_str_mv |
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Hypercyclic homogeneous polynomials on H(C); Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 226; 2-2018; 60-72 0021-9045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jat.2017.09.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904517301193 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.04773 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613511444955136 |
score |
13.070432 |