Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions
- Autores
- Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth.
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CONVOLUTION OPERATORS
FREQUENTLY HYPERCYCLIC OPERATORS
HOLOMORPHY TYPES
STRONGLY MIXING OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84445
Ver los metadatos del registro completo
id |
CONICETDig_2c5aa998e62f157817acadd02fe9e497 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84445 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic FunctionsMuro, Luis Santiago MiguelPinasco, DamianSavransky, MartinCONVOLUTION OPERATORSFREQUENTLY HYPERCYCLIC OPERATORSHOLOMORPHY TYPESSTRONGLY MIXING OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth.Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBirkhauser Verlag Ag2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84445Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 80; 4; 11-2014; 453-4680378-620X1420-8989CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00020-014-2182-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-014-2182-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.7671info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:15:21Zoai:ri.conicet.gov.ar:11336/84445instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:15:21.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
title |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
spellingShingle |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions Muro, Luis Santiago Miguel CONVOLUTION OPERATORS FREQUENTLY HYPERCYCLIC OPERATORS HOLOMORPHY TYPES STRONGLY MIXING OPERATORS |
title_short |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
title_full |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
title_fullStr |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
title_full_unstemmed |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
title_sort |
Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions |
dc.creator.none.fl_str_mv |
Muro, Luis Santiago Miguel Pinasco, Damian Savransky, Martin |
author |
Muro, Luis Santiago Miguel |
author_facet |
Muro, Luis Santiago Miguel Pinasco, Damian Savransky, Martin |
author_role |
author |
author2 |
Pinasco, Damian Savransky, Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CONVOLUTION OPERATORS FREQUENTLY HYPERCYCLIC OPERATORS HOLOMORPHY TYPES STRONGLY MIXING OPERATORS |
topic |
CONVOLUTION OPERATORS FREQUENTLY HYPERCYCLIC OPERATORS HOLOMORPHY TYPES STRONGLY MIXING OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth. Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Savransky, Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A theorem of Godefroy and Shapiro states that non-trivial convolution operators on the space of entire functions on (Formula Presented.) are hypercyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that they have frequently hypercyclic functions of exponential growth. On the other hand, in the infinite dimensional setting, the Godefroy–Shapiro theorem has been extended to several spaces of entire functions defined on Banach spaces. We prove that on all these spaces, non-trivial convolution operators are strongly mixing with respect to a gaussian probability measure of full support. For the proof we combine the results previously mentioned and we use techniques recently developed by Bayart and Matheron. We also obtain the existence of frequently hypercyclic entire functions of exponential growth. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84445 Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 80; 4; 11-2014; 453-468 0378-620X 1420-8989 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84445 |
identifier_str_mv |
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Strongly Mixing Convolution Operators on Fréchet Spaces of Holomorphic Functions; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 80; 4; 11-2014; 453-468 0378-620X 1420-8989 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00020-014-2182-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-014-2182-5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1311.7671 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083301476925440 |
score |
13.219909 |