Hypercyclic convolution operators on Fréchet spaces of analytic functions
- Autores
- Carando, D.; Dimant, V.; Muro, S.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dimant, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2007;336(2):1324-1340
- Materia
-
Convolution operators
Hypercyclic operators
Spaces of holomorphic functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v336_n2_p1324_Carando
Ver los metadatos del registro completo
id |
BDUBAFCEN_cc95b650d05ecb22dd7df56eb189a99d |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v336_n2_p1324_Carando |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Hypercyclic convolution operators on Fréchet spaces of analytic functionsCarando, D.Dimant, V.Muro, S.Convolution operatorsHypercyclic operatorsSpaces of holomorphic functionsA result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dimant, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_CarandoJ. Math. Anal. Appl. 2007;336(2):1324-1340reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:24Zpaperaa:paper_0022247X_v336_n2_p1324_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:25.715Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
title |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
spellingShingle |
Hypercyclic convolution operators on Fréchet spaces of analytic functions Carando, D. Convolution operators Hypercyclic operators Spaces of holomorphic functions |
title_short |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
title_full |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
title_fullStr |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
title_full_unstemmed |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
title_sort |
Hypercyclic convolution operators on Fréchet spaces of analytic functions |
dc.creator.none.fl_str_mv |
Carando, D. Dimant, V. Muro, S. |
author |
Carando, D. |
author_facet |
Carando, D. Dimant, V. Muro, S. |
author_role |
author |
author2 |
Dimant, V. Muro, S. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Convolution operators Hypercyclic operators Spaces of holomorphic functions |
topic |
Convolution operators Hypercyclic operators Spaces of holomorphic functions |
dc.description.none.fl_txt_mv |
A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dimant, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_Carando |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_Carando |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2007;336(2):1324-1340 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340702036426752 |
score |
12.623145 |