Hypercyclic convolution operators on Fréchet spaces of analytic functions

Autores
Carando, D.; Dimant, V.; Muro, S.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dimant, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2007;336(2):1324-1340
Materia
Convolution operators
Hypercyclic operators
Spaces of holomorphic functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v336_n2_p1324_Carando

id BDUBAFCEN_cc95b650d05ecb22dd7df56eb189a99d
oai_identifier_str paperaa:paper_0022247X_v336_n2_p1324_Carando
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Hypercyclic convolution operators on Fréchet spaces of analytic functionsCarando, D.Dimant, V.Muro, S.Convolution operatorsHypercyclic operatorsSpaces of holomorphic functionsA result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dimant, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_CarandoJ. Math. Anal. Appl. 2007;336(2):1324-1340reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:24Zpaperaa:paper_0022247X_v336_n2_p1324_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:25.715Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Hypercyclic convolution operators on Fréchet spaces of analytic functions
title Hypercyclic convolution operators on Fréchet spaces of analytic functions
spellingShingle Hypercyclic convolution operators on Fréchet spaces of analytic functions
Carando, D.
Convolution operators
Hypercyclic operators
Spaces of holomorphic functions
title_short Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_full Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_fullStr Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_full_unstemmed Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_sort Hypercyclic convolution operators on Fréchet spaces of analytic functions
dc.creator.none.fl_str_mv Carando, D.
Dimant, V.
Muro, S.
author Carando, D.
author_facet Carando, D.
Dimant, V.
Muro, S.
author_role author
author2 Dimant, V.
Muro, S.
author2_role author
author
dc.subject.none.fl_str_mv Convolution operators
Hypercyclic operators
Spaces of holomorphic functions
topic Convolution operators
Hypercyclic operators
Spaces of holomorphic functions
dc.description.none.fl_txt_mv A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dimant, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Muro, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class. © 2007 Elsevier Inc. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_Carando
url http://hdl.handle.net/20.500.12110/paper_0022247X_v336_n2_p1324_Carando
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2007;336(2):1324-1340
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340702036426752
score 12.623145