Hypercyclic convolution operators on Fréchet spaces of analytic functions

Autores
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Materia
CONVOLUTION OPERATORS
HYPERCYCLIC OPERATORS
SPACES OF HOLOMORPHIC FUNCTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/117849

id CONICETDig_0605104cf5b24a51cb022bfcfa3f8263
oai_identifier_str oai:ri.conicet.gov.ar:11336/117849
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hypercyclic convolution operators on Fréchet spaces of analytic functionsCarando, Daniel GermánDimant, Veronica IsabelMuro, Luis Santiago MiguelCONVOLUTION OPERATORSHYPERCYCLIC OPERATORSSPACES OF HOLOMORPHIC FUNCTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaAcademic Press Inc Elsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117849Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Hypercyclic convolution operators on Fréchet spaces of analytic functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 336; 2; 12-2007; 1324-13400022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X07003514info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2007.03.055info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:29:53Zoai:ri.conicet.gov.ar:11336/117849instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:29:54.106CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hypercyclic convolution operators on Fréchet spaces of analytic functions
title Hypercyclic convolution operators on Fréchet spaces of analytic functions
spellingShingle Hypercyclic convolution operators on Fréchet spaces of analytic functions
Carando, Daniel Germán
CONVOLUTION OPERATORS
HYPERCYCLIC OPERATORS
SPACES OF HOLOMORPHIC FUNCTIONS
title_short Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_full Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_fullStr Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_full_unstemmed Hypercyclic convolution operators on Fréchet spaces of analytic functions
title_sort Hypercyclic convolution operators on Fréchet spaces of analytic functions
dc.creator.none.fl_str_mv Carando, Daniel Germán
Dimant, Veronica Isabel
Muro, Luis Santiago Miguel
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Dimant, Veronica Isabel
Muro, Luis Santiago Miguel
author_role author
author2 Dimant, Veronica Isabel
Muro, Luis Santiago Miguel
author2_role author
author
dc.subject.none.fl_str_mv CONVOLUTION OPERATORS
HYPERCYCLIC OPERATORS
SPACES OF HOLOMORPHIC FUNCTIONS
topic CONVOLUTION OPERATORS
HYPERCYCLIC OPERATORS
SPACES OF HOLOMORPHIC FUNCTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
Fil: Dimant, Veronica Isabel. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muro, Luis Santiago Miguel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina
description A result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/117849
Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Hypercyclic convolution operators on Fréchet spaces of analytic functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 336; 2; 12-2007; 1324-1340
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/117849
identifier_str_mv Carando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Hypercyclic convolution operators on Fréchet spaces of analytic functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 336; 2; 12-2007; 1324-1340
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X07003514
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2007.03.055
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082772601405440
score 13.219909