Dynamics of non-convolution operators and holomorphy types
- Autores
- Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The dynamics of this class of operators, in the context of one and several complex variables, was further investigated by many authors. It turns out that the situation is somewhat different and that some purely infinite dimensional difficulties appear. For example, in contrast to the several complex variable case, it may happen that the symbol of the composition operator has no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem for holomorphy types on Banach spaces.
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
Fil: Savransky, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
COMPOSITION OPERATORS
DIFFERENTIATION OPERATORS
HOLOMORPHY TYPES
HYPERCYCLIC OPERATORS
NON-CONVOLUTION OPERATORS
STRONGLY MIXING OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98226
Ver los metadatos del registro completo
id |
CONICETDig_15c0d097fe5c652d6853afc92128202e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98226 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamics of non-convolution operators and holomorphy typesMuro, Luis Santiago MiguelPinasco, DamianSavransky, MartinCOMPOSITION OPERATORSDIFFERENTIATION OPERATORSHOLOMORPHY TYPESHYPERCYCLIC OPERATORSNON-CONVOLUTION OPERATORSSTRONGLY MIXING OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The dynamics of this class of operators, in the context of one and several complex variables, was further investigated by many authors. It turns out that the situation is somewhat different and that some purely infinite dimensional difficulties appear. For example, in contrast to the several complex variable case, it may happen that the symbol of the composition operator has no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem for holomorphy types on Banach spaces.Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaFil: Savransky, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98226Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Dynamics of non-convolution operators and holomorphy types; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 468; 2; 12-2018; 622-6410022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.08.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X18306814info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:46Zoai:ri.conicet.gov.ar:11336/98226instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:46.309CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamics of non-convolution operators and holomorphy types |
title |
Dynamics of non-convolution operators and holomorphy types |
spellingShingle |
Dynamics of non-convolution operators and holomorphy types Muro, Luis Santiago Miguel COMPOSITION OPERATORS DIFFERENTIATION OPERATORS HOLOMORPHY TYPES HYPERCYCLIC OPERATORS NON-CONVOLUTION OPERATORS STRONGLY MIXING OPERATORS |
title_short |
Dynamics of non-convolution operators and holomorphy types |
title_full |
Dynamics of non-convolution operators and holomorphy types |
title_fullStr |
Dynamics of non-convolution operators and holomorphy types |
title_full_unstemmed |
Dynamics of non-convolution operators and holomorphy types |
title_sort |
Dynamics of non-convolution operators and holomorphy types |
dc.creator.none.fl_str_mv |
Muro, Luis Santiago Miguel Pinasco, Damian Savransky, Martin |
author |
Muro, Luis Santiago Miguel |
author_facet |
Muro, Luis Santiago Miguel Pinasco, Damian Savransky, Martin |
author_role |
author |
author2 |
Pinasco, Damian Savransky, Martin |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMPOSITION OPERATORS DIFFERENTIATION OPERATORS HOLOMORPHY TYPES HYPERCYCLIC OPERATORS NON-CONVOLUTION OPERATORS STRONGLY MIXING OPERATORS |
topic |
COMPOSITION OPERATORS DIFFERENTIATION OPERATORS HOLOMORPHY TYPES HYPERCYCLIC OPERATORS NON-CONVOLUTION OPERATORS STRONGLY MIXING OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The dynamics of this class of operators, in the context of one and several complex variables, was further investigated by many authors. It turns out that the situation is somewhat different and that some purely infinite dimensional difficulties appear. For example, in contrast to the several complex variable case, it may happen that the symbol of the composition operator has no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem for holomorphy types on Banach spaces. Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina Fil: Savransky, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this article we study the hypercyclic behavior of non-convolution operators defined on spaces of analytic functions of different holomorphy types over Banach spaces. The operators in the family we analyze are a composition of differentiation and composition operators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The dynamics of this class of operators, in the context of one and several complex variables, was further investigated by many authors. It turns out that the situation is somewhat different and that some purely infinite dimensional difficulties appear. For example, in contrast to the several complex variable case, it may happen that the symbol of the composition operator has no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem for holomorphy types on Banach spaces. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98226 Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Dynamics of non-convolution operators and holomorphy types; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 468; 2; 12-2018; 622-641 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98226 |
identifier_str_mv |
Muro, Luis Santiago Miguel; Pinasco, Damian; Savransky, Martin; Dynamics of non-convolution operators and holomorphy types; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 468; 2; 12-2018; 622-641 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.08.017 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X18306814 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083384727568384 |
score |
13.216834 |