Connes' metric for states in group algebras
- Autores
- Andruchow, Esteban; Larotonda, Gabriel Andrés
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We follow the main idea of A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
CONNES´ METRIC
DIRAC OPERATOR
NONCOMMUTATIVE GEOMETRY
STATE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/109676
Ver los metadatos del registro completo
| id |
CONICETDig_d52408afc907091b6b6ee7f46473f516 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/109676 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Connes' metric for states in group algebrasAndruchow, EstebanLarotonda, Gabriel AndrésCONNES´ METRICDIRAC OPERATORNONCOMMUTATIVE GEOMETRYSTATEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We follow the main idea of A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaUnión Matemática Argentina2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109676Andruchow, Esteban; Larotonda, Gabriel Andrés; Connes' metric for states in group algebras; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 44; 2; 12-2003; 49-560041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol44info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v44n2/v44n2a04.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:52:31Zoai:ri.conicet.gov.ar:11336/109676instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:52:31.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Connes' metric for states in group algebras |
| title |
Connes' metric for states in group algebras |
| spellingShingle |
Connes' metric for states in group algebras Andruchow, Esteban CONNES´ METRIC DIRAC OPERATOR NONCOMMUTATIVE GEOMETRY STATE |
| title_short |
Connes' metric for states in group algebras |
| title_full |
Connes' metric for states in group algebras |
| title_fullStr |
Connes' metric for states in group algebras |
| title_full_unstemmed |
Connes' metric for states in group algebras |
| title_sort |
Connes' metric for states in group algebras |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Larotonda, Gabriel Andrés |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Larotonda, Gabriel Andrés |
| author_role |
author |
| author2 |
Larotonda, Gabriel Andrés |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
CONNES´ METRIC DIRAC OPERATOR NONCOMMUTATIVE GEOMETRY STATE |
| topic |
CONNES´ METRIC DIRAC OPERATOR NONCOMMUTATIVE GEOMETRY STATE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We follow the main idea of A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
| description |
We follow the main idea of A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z. |
| publishDate |
2003 |
| dc.date.none.fl_str_mv |
2003-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/109676 Andruchow, Esteban; Larotonda, Gabriel Andrés; Connes' metric for states in group algebras; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 44; 2; 12-2003; 49-56 0041-6932 1669-9637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/109676 |
| identifier_str_mv |
Andruchow, Esteban; Larotonda, Gabriel Andrés; Connes' metric for states in group algebras; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 44; 2; 12-2003; 49-56 0041-6932 1669-9637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol44 info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v44n2/v44n2a04.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782217160753152 |
| score |
12.982451 |