Connes' metric for states in group algebras

Autores
Andruchow, Esteban; Larotonda, Gabriel Andrés
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We follow the main idea of  A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
CONNES´ METRIC
DIRAC OPERATOR
NONCOMMUTATIVE GEOMETRY
STATE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109676

id CONICETDig_d52408afc907091b6b6ee7f46473f516
oai_identifier_str oai:ri.conicet.gov.ar:11336/109676
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Connes' metric for states in group algebrasAndruchow, EstebanLarotonda, Gabriel AndrésCONNES´ METRICDIRAC OPERATORNONCOMMUTATIVE GEOMETRYSTATEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We follow the main idea of  A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaUnión Matemática Argentina2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109676Andruchow, Esteban; Larotonda, Gabriel Andrés; Connes' metric for states in group algebras; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 44; 2; 12-2003; 49-560041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol44info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v44n2/v44n2a04.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:10Zoai:ri.conicet.gov.ar:11336/109676instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:11.246CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Connes' metric for states in group algebras
title Connes' metric for states in group algebras
spellingShingle Connes' metric for states in group algebras
Andruchow, Esteban
CONNES´ METRIC
DIRAC OPERATOR
NONCOMMUTATIVE GEOMETRY
STATE
title_short Connes' metric for states in group algebras
title_full Connes' metric for states in group algebras
title_fullStr Connes' metric for states in group algebras
title_full_unstemmed Connes' metric for states in group algebras
title_sort Connes' metric for states in group algebras
dc.creator.none.fl_str_mv Andruchow, Esteban
Larotonda, Gabriel Andrés
author Andruchow, Esteban
author_facet Andruchow, Esteban
Larotonda, Gabriel Andrés
author_role author
author2 Larotonda, Gabriel Andrés
author2_role author
dc.subject.none.fl_str_mv CONNES´ METRIC
DIRAC OPERATOR
NONCOMMUTATIVE GEOMETRY
STATE
topic CONNES´ METRIC
DIRAC OPERATOR
NONCOMMUTATIVE GEOMETRY
STATE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We follow the main idea of  A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description We follow the main idea of  A. Connes for the construction of a metric in the state space of a C*-algebra. We focus in the reduced algebra of a discrete group Г, and prove some equivalences and relations between two central objects of this category: the word-length growth (connected with the degree of the extension of Г when the group is an extension of Z), and the topological relation between the w*-topology and the one introduced with this metric in the state space of C_r*(Г). Recent studies [Antonescu] of Christensen and Antonescu show that, using a variation of the distance introduced by Connes, these topologies are equivalent if the group is of rapid decay, a concept which is equivalent in discrete groups to the concept of polynomial growth for the word-length (there is an extensive survey by Jolissant [Jol] that settles this equivalence). In this article we prove with elementary techniques, that Connes´ metric is finite and induces a topology which is equivalent to the w* topology in the state space, when the group Г is a finite extension of Z. This is not surprising at all, since M Rieffel recently established [Rieffel2] (with a complete different approach) this equivalence for Г=Z.
publishDate 2003
dc.date.none.fl_str_mv 2003-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109676
Andruchow, Esteban; Larotonda, Gabriel Andrés; Connes' metric for states in group algebras; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 44; 2; 12-2003; 49-56
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109676
identifier_str_mv Andruchow, Esteban; Larotonda, Gabriel Andrés; Connes' metric for states in group algebras; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 44; 2; 12-2003; 49-56
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol44
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v44n2/v44n2a04.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269786489225216
score 13.13397