Weak type (1,1) of maximal operators on metric measure spaces

Autores
Carena, Marilina
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A discretization method for the study of the weak type (1,1) for the maximal  of a sequence of convolution operators on  R^n has been introduced by Miguel de Guzmán and Teresa Carrillo,  by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in  "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed  such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated  to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the  non-atomic case we obtain as a corollary that any  of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
MAXIMAL OPERATOR
WEAK TYPE (1,1)
DIRAC DELTA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84064

id CONICETDig_54d852f609f93e1564d7948b724c2064
oai_identifier_str oai:ri.conicet.gov.ar:11336/84064
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weak type (1,1) of maximal operators on metric measure spacesCarena, MarilinaMAXIMAL OPERATORWEAK TYPE (1,1)DIRAC DELTAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A discretization method for the study of the weak type (1,1) for the maximal  of a sequence of convolution operators on  R^n has been introduced by Miguel de Guzmán and Teresa Carrillo,  by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in  "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed  such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated  to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the  non-atomic case we obtain as a corollary that any  of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUnión Matemática Argentina2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84064Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-1590041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v50n1/v50n1a12.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:53Zoai:ri.conicet.gov.ar:11336/84064instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:53.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weak type (1,1) of maximal operators on metric measure spaces
title Weak type (1,1) of maximal operators on metric measure spaces
spellingShingle Weak type (1,1) of maximal operators on metric measure spaces
Carena, Marilina
MAXIMAL OPERATOR
WEAK TYPE (1,1)
DIRAC DELTA
title_short Weak type (1,1) of maximal operators on metric measure spaces
title_full Weak type (1,1) of maximal operators on metric measure spaces
title_fullStr Weak type (1,1) of maximal operators on metric measure spaces
title_full_unstemmed Weak type (1,1) of maximal operators on metric measure spaces
title_sort Weak type (1,1) of maximal operators on metric measure spaces
dc.creator.none.fl_str_mv Carena, Marilina
author Carena, Marilina
author_facet Carena, Marilina
author_role author
dc.subject.none.fl_str_mv MAXIMAL OPERATOR
WEAK TYPE (1,1)
DIRAC DELTA
topic MAXIMAL OPERATOR
WEAK TYPE (1,1)
DIRAC DELTA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A discretization method for the study of the weak type (1,1) for the maximal  of a sequence of convolution operators on  R^n has been introduced by Miguel de Guzmán and Teresa Carrillo,  by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in  "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed  such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated  to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the  non-atomic case we obtain as a corollary that any  of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description A discretization method for the study of the weak type (1,1) for the maximal  of a sequence of convolution operators on  R^n has been introduced by Miguel de Guzmán and Teresa Carrillo,  by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in  "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed  such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated  to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the  non-atomic case we obtain as a corollary that any  of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84064
Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-159
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84064
identifier_str_mv Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-159
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v50n1/v50n1a12.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269607602159616
score 13.13397