Weak type (1,1) of maximal operators on metric measure spaces
- Autores
- Carena, Marilina
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A discretization method for the study of the weak type (1,1) for the maximal of a sequence of convolution operators on R^n has been introduced by Miguel de Guzmán and Teresa Carrillo, by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the non-atomic case we obtain as a corollary that any of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
MAXIMAL OPERATOR
WEAK TYPE (1,1)
DIRAC DELTA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84064
Ver los metadatos del registro completo
id |
CONICETDig_54d852f609f93e1564d7948b724c2064 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84064 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weak type (1,1) of maximal operators on metric measure spacesCarena, MarilinaMAXIMAL OPERATORWEAK TYPE (1,1)DIRAC DELTAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A discretization method for the study of the weak type (1,1) for the maximal of a sequence of convolution operators on R^n has been introduced by Miguel de Guzmán and Teresa Carrillo, by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the non-atomic case we obtain as a corollary that any of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points.Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUnión Matemática Argentina2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84064Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-1590041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v50n1/v50n1a12.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:53Zoai:ri.conicet.gov.ar:11336/84064instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:53.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weak type (1,1) of maximal operators on metric measure spaces |
title |
Weak type (1,1) of maximal operators on metric measure spaces |
spellingShingle |
Weak type (1,1) of maximal operators on metric measure spaces Carena, Marilina MAXIMAL OPERATOR WEAK TYPE (1,1) DIRAC DELTA |
title_short |
Weak type (1,1) of maximal operators on metric measure spaces |
title_full |
Weak type (1,1) of maximal operators on metric measure spaces |
title_fullStr |
Weak type (1,1) of maximal operators on metric measure spaces |
title_full_unstemmed |
Weak type (1,1) of maximal operators on metric measure spaces |
title_sort |
Weak type (1,1) of maximal operators on metric measure spaces |
dc.creator.none.fl_str_mv |
Carena, Marilina |
author |
Carena, Marilina |
author_facet |
Carena, Marilina |
author_role |
author |
dc.subject.none.fl_str_mv |
MAXIMAL OPERATOR WEAK TYPE (1,1) DIRAC DELTA |
topic |
MAXIMAL OPERATOR WEAK TYPE (1,1) DIRAC DELTA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A discretization method for the study of the weak type (1,1) for the maximal of a sequence of convolution operators on R^n has been introduced by Miguel de Guzmán and Teresa Carrillo, by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the non-atomic case we obtain as a corollary that any of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points. Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
A discretization method for the study of the weak type (1,1) for the maximal of a sequence of convolution operators on R^n has been introduced by Miguel de Guzmán and Teresa Carrillo, by replacing the integrable functions by finite sums of Dirac deltas. Trying to extend the above mentioned result to integral operators defined on metric measure spaces, a general setting containing at once continuous, discrete and mixed contexts, a caveat comes from the result in "On restricted weak type (1,1); the discrete case" (Akcoglu M.; Baxter J.; Bellow A.; Jones R., Israel J. Math. 124 (2001), 285--297). There a sequence of convolution operators in $ell^1(Z)$ is constructed such that the maximal operator is of restricted weak type (1,1), or equivalently of weak type (1,1) over finite sums of Dirac deltas, but not of weak type (1,1). The purpose of this note is twofold. First we prove that, in a general metric measure space with a measure that is absolutely continuous with respect to some doubling measure, the weak type (1,1) of the maximal operator associated to a given sequence of integral operators is equivalent to the weak type (1,1) over linear combinations of Dirac deltas with positive integer coefficients. Second, for the non-atomic case we obtain as a corollary that any of these weak type properties is equivalent to the weak type (1,1) over finite sums of Dirac deltas supported at different points. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84064 Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-159 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84064 |
identifier_str_mv |
Carena, Marilina; Weak type (1,1) of maximal operators on metric measure spaces; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 50; 1; 12-2009; 145-159 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v50n1/v50n1a12.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269607602159616 |
score |
13.13397 |