Twisted Semigroup Algebras
- Autores
- Rigal, Laurent; Zadunaisky Bustillos, Pablo Mauricio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec k[S] is an affine toric variety over k, and we refer to the twists of k[S] as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.
Fil: Rigal, Laurent. Université de Saint-Etienne; Argentina
Fil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Noncommutative geometry
Artin-Schelter regularity
2-cocycle twists
Zhang twists - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116933
Ver los metadatos del registro completo
id |
CONICETDig_ca12f879d5e8befc58ec31530dae4982 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116933 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Twisted Semigroup AlgebrasRigal, LaurentZadunaisky Bustillos, Pablo MauricioNoncommutative geometryArtin-Schelter regularity2-cocycle twistsZhang twistshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec k[S] is an affine toric variety over k, and we refer to the twists of k[S] as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process.Fil: Rigal, Laurent. Université de Saint-Etienne; ArgentinaFil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116933Rigal, Laurent; Zadunaisky Bustillos, Pablo Mauricio; Twisted Semigroup Algebras; Springer; Algebras and Representation Theory; 18; 5; 8-2015; 1155-11861386-923XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10468-015-9525-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007%2Fs10468-015-9525-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:22Zoai:ri.conicet.gov.ar:11336/116933instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:22.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Twisted Semigroup Algebras |
title |
Twisted Semigroup Algebras |
spellingShingle |
Twisted Semigroup Algebras Rigal, Laurent Noncommutative geometry Artin-Schelter regularity 2-cocycle twists Zhang twists |
title_short |
Twisted Semigroup Algebras |
title_full |
Twisted Semigroup Algebras |
title_fullStr |
Twisted Semigroup Algebras |
title_full_unstemmed |
Twisted Semigroup Algebras |
title_sort |
Twisted Semigroup Algebras |
dc.creator.none.fl_str_mv |
Rigal, Laurent Zadunaisky Bustillos, Pablo Mauricio |
author |
Rigal, Laurent |
author_facet |
Rigal, Laurent Zadunaisky Bustillos, Pablo Mauricio |
author_role |
author |
author2 |
Zadunaisky Bustillos, Pablo Mauricio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Noncommutative geometry Artin-Schelter regularity 2-cocycle twists Zhang twists |
topic |
Noncommutative geometry Artin-Schelter regularity 2-cocycle twists Zhang twists |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec k[S] is an affine toric variety over k, and we refer to the twists of k[S] as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process. Fil: Rigal, Laurent. Université de Saint-Etienne; Argentina Fil: Zadunaisky Bustillos, Pablo Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated, then Spec k[S] is an affine toric variety over k, and we refer to the twists of k[S] as quantum affine toric varieties. We show that every quantum affine toric variety has a “dense quantum torus”, in the sense that it has a localization isomorphic to a quantum torus. We study quantum affine toric varieties and show that many geometric regularity properties of the original toric variety survive the deformation process. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116933 Rigal, Laurent; Zadunaisky Bustillos, Pablo Mauricio; Twisted Semigroup Algebras; Springer; Algebras and Representation Theory; 18; 5; 8-2015; 1155-1186 1386-923X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116933 |
identifier_str_mv |
Rigal, Laurent; Zadunaisky Bustillos, Pablo Mauricio; Twisted Semigroup Algebras; Springer; Algebras and Representation Theory; 18; 5; 8-2015; 1155-1186 1386-923X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10468-015-9525-z info:eu-repo/semantics/altIdentifier/doi/10.1007%2Fs10468-015-9525-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268970711777280 |
score |
13.13397 |