Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
- Autores
- Falomir, Horacio Alberto; González Pisani, Pablo Andrés
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Self-adjoint extensions
Dirac operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98034
Ver los metadatos del registro completo
id |
CONICETDig_487393c0a7e82669c562ee4602e7bb61 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98034 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particlesFalomir, Horacio AlbertoGonzález Pisani, Pablo AndrésSelf-adjoint extensionsDirac operatorhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98034Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles; IOP Publishing; Journal of Physics A: Mathematical and General; A34; 12-2001; 4143-41540305-44701361-644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/34/19/312info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:47Zoai:ri.conicet.gov.ar:11336/98034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:47.749CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
title |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
spellingShingle |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles Falomir, Horacio Alberto Self-adjoint extensions Dirac operator |
title_short |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
title_full |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
title_fullStr |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
title_full_unstemmed |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
title_sort |
Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto González Pisani, Pablo Andrés |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto González Pisani, Pablo Andrés |
author_role |
author |
author2 |
González Pisani, Pablo Andrés |
author2_role |
author |
dc.subject.none.fl_str_mv |
Self-adjoint extensions Dirac operator |
topic |
Self-adjoint extensions Dirac operator |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure. Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98034 Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles; IOP Publishing; Journal of Physics A: Mathematical and General; A34; 12-2001; 4143-4154 0305-4470 1361-644 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98034 |
identifier_str_mv |
Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles; IOP Publishing; Journal of Physics A: Mathematical and General; A34; 12-2001; 4143-4154 0305-4470 1361-644 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/34/19/312 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270132413399040 |
score |
13.13397 |