Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles

Autores
Falomir, Horacio Alberto; González Pisani, Pablo Andrés
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Self-adjoint extensions
Dirac operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98034

id CONICETDig_487393c0a7e82669c562ee4602e7bb61
oai_identifier_str oai:ri.conicet.gov.ar:11336/98034
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particlesFalomir, Horacio AlbertoGonzález Pisani, Pablo AndrésSelf-adjoint extensionsDirac operatorhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98034Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles; IOP Publishing; Journal of Physics A: Mathematical and General; A34; 12-2001; 4143-41540305-44701361-644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/34/19/312info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:47Zoai:ri.conicet.gov.ar:11336/98034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:47.749CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
title Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
spellingShingle Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
Falomir, Horacio Alberto
Self-adjoint extensions
Dirac operator
title_short Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
title_full Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
title_fullStr Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
title_full_unstemmed Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
title_sort Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles
dc.creator.none.fl_str_mv Falomir, Horacio Alberto
González Pisani, Pablo Andrés
author Falomir, Horacio Alberto
author_facet Falomir, Horacio Alberto
González Pisani, Pablo Andrés
author_role author
author2 González Pisani, Pablo Andrés
author2_role author
dc.subject.none.fl_str_mv Self-adjoint extensions
Dirac operator
topic Self-adjoint extensions
Dirac operator
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the subspaces of definite angular momentum l+1/2 are invariant under the action of the Hamiltonian H. We show that, for l different from the integer part of kappa, the restriction of H to these subspaces, H_l is essentially self-adjoint, while for l equal to the integer part of kappa, H_l admits a one-parameter family of self-adjoint extensions (SAE). In the later case, the functions in the domain of H_l are singular (but square-integrable) at the origin, their behavior being dictated by the value of the parameter gamma that identifies the SAE. We also determine the spectrum of the Hamiltonian as a function of kappa and gamma, as well as its closure.
publishDate 2001
dc.date.none.fl_str_mv 2001-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98034
Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles; IOP Publishing; Journal of Physics A: Mathematical and General; A34; 12-2001; 4143-4154
0305-4470
1361-644
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98034
identifier_str_mv Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Hamiltonian self-adjoint extensions for(2+1)-dimensional Dirac particles; IOP Publishing; Journal of Physics A: Mathematical and General; A34; 12-2001; 4143-4154
0305-4470
1361-644
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/34/19/312
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270132413399040
score 13.13397